1. Корни, степени, логарифмы

Заказать уникальный реферат
Тип работы: Реферат
Предмет: Школьная математика
  • 55 55 страниц
  • 3 + 3 источника
  • Добавлена 18.01.2016
748 руб.
  • Содержание
  • Часть работы
  • Список литературы
  • Вопросы/Ответы

Введение 3
1. Корни, степени, логарифмы 3
2. Показательная, степенная, логарифмическая функция 31
3. Параллельность прямых и плоскостей 45
Заключение 54
Список использованных источников 55

Фрагмент для ознакомления

Поэтому сначала рассмотрим степенные функции при нечетных положительных значениях показателя a, далее - при четных положительных, далее - при нечетных отрицательных показателях степени, и, наконец, при четных отрицательных a.
Свойства степенных функций с дробными и иррациональными показателями (как и вид графиков таких степенных функций) зависят от значения показателя a. Их будем рассматривать, во-первых, при a от нуля до единицы, во-вторых, при a больших единицы, в-третьих, при a от минус единицы до нуля, в-четвертых, при a меньших минус единицы.
В заключении этого пункта для полноты картины опишем степенную функцию с нулевым показателем.
Рассмотрим степенную функцию при нечетном положительном показателе степени, то есть, при а=1,3,5,….
На рисунке ниже приведены графики степенных фнукций – черная линия, – синяя линия, – красная линия, – зеленая линия. При а=1имеем линейную функцию y=x.

Свойства степенной функции с нечетным положительным показателем:
Область определения: .
Область значений: .
Функция нечетная, так как .
Функция возрастает при .
Функция выпуклая при и вогнутая при (кроме линейной функции).
Точка (0;0) является точкой перегиба (кроме линейной функции).
Асимптот нет.
Функция проходит через точки (-1;-1), (0;0), (1;1).
Рассмотрим степенную функцию с четным положительным показателем степени, то есть, при а=2,4,6,….
В качестве примера приведем графики степенных функций – черная линия, – синяя линия, – красная линия. При а=2 имеем квадратичную функцию, графиком которой является квадратичная парабола.


Свойства степенной функции с четным положительным показателем:
Область определения: .
Область значений: .
Функция четная, так как .
Функция возрастает при , убывает при .
Функция вогнутая при .
Точек перегиба нет.
Асимптот нет.
Функция проходит через точки (-1;1), (0;0), (1;1).
Посмотрите на графики степенной функции при нечетных отрицательных значениях показателя степени, то есть, при а=-1,-3,-5,….


На рисунке в качестве примеров показаны графики степенных функций – черная линия, – синяя линия, – красная линия, – зеленая линия. При а=-1 имеем обратную пропорциональность, графиком которой является гипербола.
Свойства степенной функции с нечетным отрицательным показателем:
Область определения: .
При x=0 имеем разрыв второго рода, так как приа=-1,-3,-5,…. Следовательно, прямая x=0 является вертикальной асимптотой.
Область значений: .
Функция нечетная, так как .
Функция убывает при .
Функция выпуклая при и вогнутая при .
Точек перегиба нет.
Горизонтальной асимптотой является прямая y = 0, так как

при а=-1,-3,-5,….
Функция проходит через точки (-1;-1), (1;1).
Перейдем к степенной функции при а=-2,-4,-6,….

На рисунке изображены графики степенных функций – черная линия, – синяя линия, – красная линия.
Свойства степенной функции с четным отрицательным показателем:
Область определения: .
При x=0 имеем разрыв второго рода, так как приа=-2,-4,-6,…. Следовательно, прямая x=0 является вертикальной асимптотой.
Область значений: .
Функция четная, так как .
Функция возрастает при , убывает при .
Функция вогнутая при .
Точек перегиба нет.
Горизонтальной асимптотой является прямая y=0, так как

при а=-2,-4,-6,….
Функция проходит через точки (-1;1), (1;1).
Рассмотрим степенную функцию с рациональным или иррациональным показателем a, причем .
Приведем графики степенных функций при а=11/12 (черная линия), а=5/7(красная линия), (синяя линия), а=2/5 (зеленая линия).

При других значениях показателя степени a, графики функции будут иметь схожий вид.
Свойства степенной функции при :
Область определения: .
Область значений: .
Функция не является ни четной, ни нечетной, то есть она общего вида.
Функция возрастает при .
Функция выпуклая при .
Точек перегиба нет.
Асимптот нет.
Функция проходит через точки (0;0), (1;1).
Рассмотрим степенную функцию с нецелым рациональным или иррациональным показателем a, причем .
Приведем графики степенных функций, заданных формулами (черная, красная, синяя и зеленая линии соответственно).

При других значениях показателя степени a, графики функции будут иметь схожий вид.
Свойства степенной функции при :
Область определения: .
Область значений: .
Функция не является ни четной, ни нечетной, то есть она общего вида.
Функция возрастает при .
Функция вогнутая при , если ; при , если .
Точек перегиба нет.
Асимптот нет.
Функция проходит через точки (0;0), (1;1).
Переходим к степенной функции , когда .
Чтобы хорошо представлять вид графиков степенных функций при , приведем примеры графиков функций (черная, красная, синяя и зеленая кривые соответственно).

Свойства степенной функции с показателем a, :
Область определения: . при , следовательно, х=0 является вертикальной асимптотой.
Область значений: .
Функция не является ни четной, ни нечетной, то есть она общего вида.
Функция убывает при .
Функция вогнутая при .
Точек перегиба нет.
Горизонтальной асимптотой является прямая y=0.
Функция проходит через точку (1;1).
Приведем примеры графиков степенных функций при , они изображены черной, красной, синей и зеленой линиями соответственно.

Свойства степенной функции с нецелым отрицательным показателем, меньшим минус единицы:
Область определения: .
при , следовательно, х=0 является вертикальной асимптотой.
Область значений: .
Функция не является ни четной, ни нечетной, то есть она общего вида.
Функция убывает при .
Функция вогнутая при .
Точек перегиба нет.
Горизонтальной асимптотой является прямая y=0.
Функция проходит через точку (1;1).
При а=0 и имеем функцию - это прямая из которой исключена точка(0;1) (выражению 00 условились не придавать никакого значения).
Одной из основных элементарных функций является показательная функция.
График показательной функции , где и принимает различный вид в зависимости от значения основания а. Разберемся в этим.
Сначала рассмотрим случай, когда основание показательной функции принимает значение от нуля до единицы, то есть, .
Для примера приведем графики показательной функции при а = 1/2 – синяя линия ,a = 5/6 – красная линия. Аналогичный вид имеют графики показательной функции при других значениях основания из интервала .

Свойства показательной функции с основанием меньшим единицы:
Областью определения показательной функции является все множество действительных чисел: .
Область значений: .
Функция не является ни четной, ни нечетной, то есть, она общего вида.
Показательная функция, основание которой меньше единицы, убывает на всей области определения.
Функция вогнутая при .
Точек перегиба нет.
Горизонтальной асимптотой является прямая y = 0 при х стремящемся к плюс бесконечности.
Функция проходит через точку (0;1).
Переходим к случаю, когда основание показательной функции больше единицы, то есть, .
В качестве иллюстрации приведем графики показательных функций – синяя линия и – красная линия. При других значениях основания, больших единицы, графики показательной функции будут иметь схожий вид.

Свойства показательной функции с основанием большим единицы:
Область определения показательной функции: .
Область значений: .
Функция не является ни четной, ни нечетной, то есть она общего вида.
Показательная функция, основание которой больше единицы, возрастает при .
Функция вогнутая при .
Точек перегиба нет.
Горизонтальной асимптотой является прямая y = 0 при х стремящемся к минус бесконечности.
Функция проходит через точку (0;1).
Следующей основной элементарной функцией является логарифмическая функция , где , . Логарифмическая функция определена лишь для положительных значений аргумента, то есть, при .
График логарифмической функции принимает различный вид в зависимости от значения основания а.
Начнем со случая, когда .
Для примера приведем графики логарифмической функции при а = 1/2 – синяя линия, a = 5/6 – красная линия. При других значениях основания, не превосходящих единицы, графики логарифмической функции будут иметь схожий вид.

Свойства логарифмической функции с основанием меньшим единицы:
Область определения логарифмической функции: . При х стремящемся к нулю справа, значения функции стремятся к плюс бесконечности.
Область значений: .
Функция не является ни четной, ни нечетной, то есть она общего вида.
Логарифмическая функция убывает на всей области определения.
Функция вогнутая при .
Точек перегиба нет.
Горизонтальных асимптот нет.
Функция проходит через точку (1;0).
Перейдем к случаю, когда основание логарифмической функции больше единицы ().
Покажем графики логарифмических функций – синяя линия, – красная линия. При других значениях основания, больших единицы, графики логарифмической функции будут иметь схожий вид.

Свойства логарифмической функции с основанием большим единицы:
Область определения: . При х стремящемся к нулю справа, значения функции стремятся к минус бесконечности.
Областю значений логарифмической функции является все множество действительных чисел, то есть, интервал .
Функция не является ни четной, ни нечетной, то есть она общего вида.
Функция возрастает при .
Функция выпуклая при .
Точек перегиба нет.
Горизонтальных асимптот нет.
Функция проходит через точку (1;0).

Параллельность прямых и плоскостей

Начнем с определения параллельных прямой и плоскости.
Прямая и плоскость называются параллельными, если они не имеют общих точек.
Для обозначения параллельности используется символ «». То есть, если прямая a и плоскость параллельны, то можно кратко записать a.

Заметим, что выражения «прямая a и плоскость параллельны», «прямая a параллельна плоскости » и «плоскость параллельна прямой a» одинаково употребимы.
В качестве примера параллельных прямой и плоскости приведем натянутую гитарную струну и плоскость грифа этой гитары.
Параллельность прямой и плоскости далеко не всегда является очевидным фактом. Другими словами, параллельность прямой и плоскости приходится доказывать. Существует достаточное условие, выполнение которого гарантирует параллельность прямой и плоскости. Это условие называют признаком параллельности прямой и плоскости. Прежде чем ознакомиться с формулировкой этого признака, рекомендуем повторить определение параллельных прямых.
Теорема.
Если прямая a, не лежащая в плоскости , параллельна некоторой прямой b, которая лежит в плоскости , то прямая a параллельна плоскости .
Озвучим еще одну теорему, которую можно использовать для установления параллельности прямой и плоскости.
Теорема.
Если одна из двух параллельных прямых параллельна некоторой плоскости, то вторая прямая либо также параллельна этой плоскости, либо лежит в ней.
Доказательство признака параллельности прямой и плоскости и доказательство озвученной теоремы приводятся в учебнике геометрии за 10-11 классы, который указан в конце статьи в списке рекомендованной литературы.
Определение направляющего вектора прямой и определение нормального вектора плоскости позволяют записать необходимое и достаточное условие параллельности прямой и плоскости.
Теорема.
Для параллельности прямой a, не лежащей в плоскости , и плоскости необходимо и достаточно, чтобы направляющий вектор прямой a был перпендикулярен нормальному вектору плоскости .
Это условие удобно использовать для доказательства параллельности прямой и плоскости, которые заданы в прямоугольной системе координат в трехмерном пространстве некоторыми уравнениями.
Пусть прямую a в прямоугольной системе координат Oxyz задают канонические уравнения прямой в пространстве вида или параметрические уравнения прямой в пространстве вида , а плоскости соответствует общее уравнение плоскости . Тогда - направляющий вектор прямой a, а - нормальный вектор плоскости . Для перпендикулярности векторов и необходимо и достаточно, чтобы скалярное произведение равнялось нулю (об этом написано в статье условие перпендикулярности двух векторов).
Следовательно, необходимое и достаточное условие параллельности прямой a и плоскости (a не лежит в плоскости ) примет вид , где - направляющий вектор прямой a, - нормальный вектор плоскости .
Разберем решения нескольких примеров.
Пример.
Являются ли прямая и плоскость параллельными?
Решение.
Заданная прямая не лежит в плоскости, так как координаты точки прямой не удовлетворяют уравнению плоскости: . Проверим выполнение необходимого и достаточного условия параллельности прямой и плоскости. Очевидно, - направляющий вектор прямой , - нормальный вектор плоскости . Вычислим скалярное произведение векторов и : . Таким образом, векторы и перпендикулярны. Следовательно, заданные прямая и плоскость параллельны.
Ответ:
да, прямая и плоскость параллельны.
Пример.
Параллельна ли прямая АВ координатной плоскости Oyz, если .
Решение.
Точка не лежит в координатной плоскости Oyz, так как абсцисса этой точки отлична от нуля.
Нормальным вектором плоскости Oyz является вектор . В качестве направляющего вектора прямой AB возьмем вектор . Координаты точек начала и конца вектора позволяют вычислить координаты этого вектора, тогда . Проверим выполнение необходимого и достаточного условия перпендикулярности векторов и : . Следовательно, прямая AB и координатная плоскость Oyz не параллельны.
Ответ:
нет, не параллельны.
Разобранное условие не совсем удобно для доказательства параллельности прямой aи плоскости , так как отдельно приходится проверять, что прямая a не лежит в плоскости . Поэтому, доказывать параллельность прямой a и плоскости удобнее с помощью следующего необходимого и достаточного условия.
Пусть прямая a задана уравнениями двух пересекающихся плоскостей , а плоскость - общим уравнением плоскости .
Теорема.
Для параллельности прямой a и плоскости необходимо и достаточно, чтобы система линейных уравнений вида не имела решений.
Доказательство.
Действительно, если прямая a параллельна плоскости , то они по определению не имеют общих точек. Следовательно, не существует ни одной точки в прямоугольной системе координат Oxyz, координаты которой удовлетворяли бы одновременно и уравнениям прямой и уравнению плоскости . Значит, система уравнений вида несовместна.
И обратно: если система уравнений вида не имеет решений, то не существует ни одной точки в прямоугольной системе координат Oxyz, координаты которой удовлетворяли бы одновременно всем уравнениям системы. Тогда, не существует точки, координаты которой одновременно удовлетворяют и уравнениям прямой и уравнению плоскости . Следовательно, прямая a и плоскость не имеют общих точек, то есть, они параллельны.
В свою очередь система уравнений не имеет решений, когда ранг основной матрицы системы меньше ранга расширенной матрицы (это следует из теоремы Кронекера-Капелли, при необходимости смотрите статью решение систем линейных уравнений). Несовместность этой системы уравнений можно также показать, используя метод Гаусса для решения систем линейных уравнений.
Пример.
Докажите параллельность прямой и плоскости .
Решение.
Перейдем от канонических уравнений прямой к уравнениям двух пересекающихся плоскостей:
Для доказательства параллельности прямой и плоскости покажем, что система уравнений не имеет решения. Воспользуемся методом Гаусса:

Действительно, система уравнений несовместна, следовательно, заданные прямая и плоскость не имеют общих точек. Этим доказана параллельность прямой и плоскости .
Рассмотрим следующие задачи.
1). Задача 1.

Доказательство
МN - средняя линия треугольника АВС, значит МN || АВ, АВ a .
Таким образом, МN || a (по признаку параллельности прямой и плоскости).
2). Задача 2.

Доказательство
МN - средняя линия трапеции АВСD, значит МN || АВ; АВ a (по условию),
Таким образом, МN || a (по признаку параллельности прямой и плоскости).
3). Задача 3.
Сторона АС треугольника АВС параллельна плоскости a , а стороны АВ и ВС пересекаются с этой плоскостью в точках М и N. Докажите, что треугольники АВС и МВN подобны.
Перед решением данной задачи необходимо вспомнить признаки подобия треугольников.

Доказательство
1. По утверждению 1° : МN || АC. Тогда угол А = углу ВМN (как односторонние при параллельных прямых).
2. угол В - общий.
З. Таким образом, по двум углам треугольник АВС подобен треугольнику МВN.
4). Задача 4.
На сторонах АВ и АС треугольника АВС взяты соответственно точки D и E так, что ОE = 5 см и ВD = 2/3. Плоскость a проходит через точки B и С и параллельна отрезку ОE. Найдите длину отрезка ВС.

Решение:
Из условия задачи № 26: треугольник АВС подобен треугольнику АDЕ.
Тогда АВ/АD = ВС/DЕ, 5/3 = х/5, х = 25/3, х = 81/3.
Ответ: 81/3.

Заключение

Таким образом, в данной работы были раскрыты вопросы параллельности прямой и плоскости, изучены корни, степени и логарифмы, а также исследована показательная, степенная, логарифмическая функция.





Список использованных источников

Атанасян Л.С., Бутузов В.Ф., Кадомцев С.Б., Позняк Э.Г., Юдина И.И. Геометрия. 7 – 9 классы: учебник для общеобразовательных учреждений.
Атанасян Л.С., Бутузов В.Ф., Кадомцев С.Б., Киселева Л.С., Позняк Э.Г. Геометрия. Учебник для 10-11 классов средней школы.
Погорелов А.В., Геометрия. Учебник для 7-11 классов общеобразовательных учреждений.
Бугров Я.С., Никольский С.М. Высшая математика. Том первый: элементы линейной алгебры и аналитической геометрии.
Ильин В.А., Позняк Э.Г. Аналитическая геометрия.












38

1. Атанасян Л.С., Бутузов В.Ф., Кадомцев С.Б., Позняк Э.Г., Юдина И.И. Геометрия. 7 – 9 классы: учебник для общеобразовательных учреждений.
2. Атанасян Л.С., Бутузов В.Ф., Кадомцев С.Б., Киселева Л.С., Позняк Э.Г. Геометрия. Учебник для 10-11 классов средней школы.
3. Погорелов А.В., Геометрия. Учебник для 7-11 классов общеобразовательных учреждений.
4. Бугров Я.С., Никольский С.М. Высшая математика. Том первый: элементы линейной алгебры и аналитической геометрии.
5. Ильин В.А., Позняк Э.Г. Аналитическая геометрия.

Вопрос-ответ:

В чем разница между параллельными прямыми и плоскостями?

Параллельные прямые - это прямые, которые лежат в одной и той же плоскости и никогда не пересекаются. Параллельные плоскости - это плоскости, которые не пересекаются и не лежат в одной и той же плоскости. То есть, параллельные прямые находятся в одной плоскости, а параллельные плоскости не лежат в одной плоскости.

Каковы свойства степенных функций?

Свойства степенных функций зависят от значения показателя степени. Если показатель является нечетным положительным числом, то функция будет монотонно возрастающей. Если показатель является четным положительным числом, то функция будет монотонно убывающей. Если показатель является нечетным отрицательным числом, то функция будет монотонно убывающей, но с отрицательными значениями. Если показатель является четным отрицательным числом, то функция будет монотонно возрастающей, но с отрицательными значениями.

Какие свойства утверждаются о функциях с дробными и иррациональными показателями степени?

Функции с дробными и иррациональными показателями степени обладают особыми свойствами. Например, при дробных показателях степени возможно нахождение нескольких значений функции для одного и того же значения аргумента. При иррациональных показателях степени функции могут быть неопределены для некоторых аргументов.

Что означает понятие "параллельность прямых и плоскостей"?

Параллельность прямых и плоскостей означает, что они не пересекаются и не имеют общих точек. Прямые параллельны, если они имеют одинаковый угловой коэффициент, что означает, что они имеют одинаковый наклон. Плоскости параллельны, если их нормали (векторы, перпендикулярные плоскостям) коллинеарны, то есть направления векторов совпадают.