Оценка противогрибковой активности вторичных метаболитов бактерий на примере плесневого гриба Alternaria brassicicola F-1864

Заказать уникальную дипломную работу
Тип работы: Дипломная работа
Предмет: Биология
  • 112 112 страниц
  • 236 + 236 источников
  • Добавлена 10.07.2022
4 785 руб.
  • Содержание
  • Часть работы
  • Список литературы
  • Вопросы/Ответы
Оглавление
Введение 5
1. Литературный обзор 8
1.1. Грибы фитопатогены сельскохозяйственных культур. 8
1.1.1. Биологические особенности фитопатогенного гриба Alternaria brassicicola 20
1.1.2. Патогенез гриба Alternaria brassicicola 22
1.2. Способы борьбы с фитопатогенными грибами 28
1.2.1. Химические методы. 30
1.2.1.1. Разнообразие фунгицидов 30
1.2.1.2. Применение фунгицидов 32
1.2.1.3. Экологическая опасность применения пестицидов. 35
1.2.2. Биологические методы. 38
1.2.2.1. Разнообразие микроорганизмов, обладающих антагонистической активностью в отношении патогенных грибов растений. 43
1.2.2.2. Способы выделения микроорганизмов, обладающих антагонистической активностью в отношении патогенных грибов растений. 46
1.2.2.4. Использование бактерий-антагонистов с выраженной противогрибковой активностью. 53
1.3. Преимущества применения микроорганизмов-антагонистов в борьбе с патогенами растений. 54
2. Материалы и методы. 57
2.1. Выделение штаммов бактерий, обладающих антифунгальной активностью. 57
2.2. Поддержание коллекции штаммов бактерий, обладающих антифунгальной активностью. 57
2.3. Определение морфолого-культуральных и физиолого-биохимических свойств штаммов-антагонистов. 58
2.4. Определение антифунгальной активности штаммов бактерий в отношении штамма плесневого гриба Alternaria brassicicola F-1864 методом колодцев (лунок). 62
3. Результаты 64
3.1. Разнообразие выделенных штаммов-бактерий 64
3.2. Таксономическая принадлежность выделенных штаммов 64
3.3. Оценка противогрибковой активности выделенных штаммов бактерий 65
3.4. Определение наиболее перспективных штаммов-антагонистов 65
4. Обсуждение 67
Выводы 73
Список литературы 75
ПРИЛОЖЕНИЕ 105

Фрагмент для ознакомления

formosana, florin leaf against plant pathogenic fungi. Bioresource Technol, 99: 6266-6270. Chater KF. 2016. Recent advances in understanding Streptomyces. F1000Research. 5:2795Chatterjee, S., Kuang, Y., Splivallo, R., Chatterjee, P., and Karlovsky, P. (2016). Interactions among filamentous fungi Aspergillus niger, Fusarium verticillioides and Clonostachys rosea: fungal biomass, diversity of secreted metabolites and fumonisin production. BMC Microbiol. 16, 83–83. doi: 10.1186/s12866-016-0698-3Chen M-H, Chang S-S, Dong B, Yu L-Y, Wu Y-X, Wang R-Z, Jiang W, Gao Z-P, Si S-Y.. 2018. Ahmpatinin i Bu, a new HIV-1 protease inhibitor, from Streptomyces sp. CPCC 202950. RSC Adv. 8:5138–5144Cho Y, Cramer RA, Kim K-H et al., 2007. The Fus3/Kss1 MAP kinase homolog Amk1 regulates the expression of genes encoding hydrolytic enzymes in Alternaria brassicicola. Fungal Genetics and Biology 44, 543– 53.Cho Y, 2015. How the necrotrophic fungus Alternaria brassicicola kills plant cells remains an enigma. Eukaryotic Cell 14, 335– 44.Cobos, R., Calvo-Peña, C., Álvarez-Pérez, J. M., Ibáñez, A., Diez-Galán, A., González-García, S., et al. (2019). Necrotic and cytolytic activity on grapevine leaves produced by Nep1-like proteins of Diplodia seriata. Front. Plant Sci. 10:1282. doi: 10.3389/fpls.2019.01282Costa, J. H., Wassano, C. I., Angolini, C. F. F., Scherlach, K., Hertweck, C., and Pacheco, F. T. (2019). Antifungal potential of secondary metabolites involved in the interaction between citrus pathogens. Sci. Rep. 9:18647. doi: 10.1038/s41598-019-55204-9Daferera DJ, Ziogas BN, Polissiou MG. (2003). The effectiveness of plant essential oils on the growth of Botrytis cinerea, Fusarium sp. and Clavibacter michiganensis subsp. michiganensis. Crop Protection, 22: 39-44.Daniel CK, Lennox CL, Vries FA. (2015). In-vitro effects of garlic extracts on pathogenic fungi Botrytis cinerea, Penicillium expansum and Neofabraea alba. S Afr J Sci, 111(7/8): 1-8.Dang HX, Pryor B, Peever T, Lawrence CB, 2015. The Alternaria genomes database: a comprehensive resource for a fungal genus comprised of saprophytes, plant pathogens, and allergenic species. BMC Genomics 16, 239.De Guillen, K., Ortiz-Vallejo, D., Gracy, J., Fournier, E., Kroj, T., and Padilla, A. (2015). Structure analysis uncovers a highly diverse but structurally conserved effector family in Phytopathogenic fungi. PLoS Pathog. 11:e1005228. doi: 10.1371/journal.ppat.1005228Díaz-Dellavalle P, Cabrera A, Alem D, Larrañaga P, Ferreira F, Dalla M. (2011). Research: Antifungal activity of medicinal plant extracts against phytopathogenic fungus Alternaria spp. Chil J Agr Res, 71(2): 231-239.Ding, F., Cheng, J., Fu, Y., Chen, T., Li, B., Jiang, D., et al. (2019). Early transcriptional response to DNA virus infection in Sclerotinia sclerotiorum. Viruses 11:278. doi: 10.3390/v11030278Divon HH, Fluhr R. Nutrition acquisition strategies during fungal infection of plants. FEMS Microbiol Lett. 2007;266:65–74. doi: 10.1111/j.1574-6968.2006.00504.x. Dixon GR, 1981. Alternaria spp. (dark leaf and pod spot). In: GR Dixon, ed. Vegetable Crop Diseases. London, UK: Palgrave Macmillan, 119– 23Dong C., Wang L., Li Q., Shang Q. Epiphytic and endophytic fungal communities of tomato plants. Hortic. Plant J. 2021;7:38–48. doi: 10.1016/j.hpj.2020.09.002.El-Baky N.A., Amara A.A.A.F. Recent approaches towards control of fungal diseases in plants: An updated review. J. Fungi. 2021;7:900. doi: 10.3390/jof7110900.Eilenberg J., Hajek A., Lomer C. (2001). Suggestions for unifying the terminology in biological control. BioControl 46 387–400. 10.1023/A:1014193329979Errakhi R, Meimoun P, Lehner A, Vidal G, Briand J, Corbineau F, Rona JP, Bouteau F. 2008. Anion channel activity is necessary to induce ethylene synthesis and programmed cell death in response to oxalic acid. J Exp Bot 59:3121–3129. doi: 10.1093/jxb/ern166.El-Tarabily K.A., Sivasithamparam K. Non-streptomycete actinomycetes as biocontrol agents of soil-borne fungal plant pathogens and as plant growth promoters. Soil Biol. Biochem. 2006;38:1505–1520. doi: 10.1016/j.soilbio.2005.12.017.Feichtenberger E. Citrus phytophthora diseases: Management challenges and successes. J. Citrus Pathol. 2015;2:27203. doi: 10.5070/C421027203. Félix, C., Libório, S., Nunes, M., Félix, R., Duarte, A. S., Alves, A., et al. (2018). Lasiodiplodia theobromae as a producer of biotechnologically relevant enzymes. Int. J. Mol. Sci. 19:29. doi: 10.3390/ijms19020029Félix, C., Meneses, R. S., Goncalves, M. F., Tilleman, L., Duarte, A. S., Jorrinnovo, J. V., et al. (2019). A multi-omics analysis of the grapevine pathogen Lasiodiplodia theobromae reveals that temperature affects the expression of virulence- and pathogenicity-related genes. Sci. Rep. 9, 1–12. doi: 10.1038/s41598-019-49551-wXiaoxia Feng, Dong Li, Wenqing Liang, Ting Ruan, Guibin Jiang. Recognition and Prioritization of Chemical Mixtures and Transformation Products in Chinese Estuarine Waters by Suspect Screening Analysis. Environmental Science & Technology 2021, 55 (14) , 9508-9517. https://doi.org/10.1021/acs.est.0c06773Fira D, Dimkić I, Berić T, Lozo J, Stanković S. Biological control of plant pathogens by Bacillus species. J Biotechnol. 2018 Nov 10;285:44-55. doi: 10.1016/j.jbiotec.2018.07.044.Fisher, M. C.; Henk, D. A.; Briggs, C. J.; Brownstein, J. S.; Madoff, L. C.; McCraw, S. L.; Gurr, S. J. Emerging fungal threats to animal, plant and ecosystem health. Nature 2012, 484 (7393), 186– 194,  DOI: 10.1038/nature10947 Friesen TL, Faris JD, Solomon PS, Oliver RP. Host-specific toxins: effectors of necrotrophic pathogenicity. Cell Microbiol. 2008;10:1421–8. doi: 10.1111/j.1462-5822.2008.01153.x.Fu, S. F., Wei, J. Y., Chen, H. W., Liu, Y. Y., Lu, H. Y., and Chou, J. Y. (2015). Indole-3-acetic acid: a widespread physiological code in interactions of fungi with other organisms. Plant Signal Behav. 10:e1048052. doi: 10.1080/15592324.2015.1048052Fan C, Köller W. Diversity of cutinases from plant pathogenic fungi: differential and sequential expression of cutinolytic esterases by Alternaria brassicicola. FEMS Microbiol Lett. 1998;158:33–8. doi: 10.1111/j.1574-6968.1998.tb12796.x.Fan B, Blom J, Klenk H-P, Borriss R. 2017. Bacillus amyloliquefaciens, Bacillus velezensis, and Bacillus siamensis form an “operational group B. amyloliquefaciens” within the B. subtilis species complex. Front Microbiol 8:22. doi: 10.3389/fmicb.2017.00022.Garrigues, S., Gandía, M., Castillo, L., Coca, M., Marx, F., Marcos, J. F., et al. (2018). Three antifungal proteins from Penicillium expansum: different patterns of production and antifungal activity. Front. Microbiol. 9:2370. doi: 10.3389/fmicb.2018.02370Georgios D. Gikas, Zisis Vryzas, Ioannis Karametos, Vassilios A. Tsihrintzis. Pyraclostrobin Removal in Pilot-Scale Horizontal Subsurface Flow Constructed Wetlands and in Porous Media Filters. Processes 2022, 10 (2), 414. https://doi.org/10.3390/pr10020414Gomes, E. V., Costa, M. N., de Paula, R. G., de Azevedo, R. R., da Silva, F. L., Noronha, E. F., et al. (2015). The Cerato-Platanin protein Epl-1 from Trichoderma harzianum is involved in mycoparasitism, plant resistance induction and self-cell wall protection. Sci. Rep. 5:17998. doi: 10.1038/srep17998Gomes, E. V., Ulhoa, C. J., Cardoza, R. E., Silva, R. N., Gutiérrez, S., Martins, E., et al. (2017). Involvement of Trichoderma harzianum Epl-1 protein in the regulation of botrytis virulence- and tomato defense-related genes. Front. Plant Sci. 8:880. doi: 10.3389/fpls.2017.00880Goodfellow M, Busarakam K, Idris H, Labeda DP, Nouioui I, Brown R, Kim B-Y, del Carmen Montero-Calasanz M, Andrews BA, Bull AT.. 2017. Streptomyces asenjonii sp. nov., isolated from hyper-arid Atacama Desert soils and emended description of Streptomyces viridosporus Pridham et al. 1958. Antonie Van Leeuwenhoek. 110:1133–1148.Michael S. Gross, Thomas G. Bean, Michelle L. Hladik, Barnett A. Rattner, Kathryn M. Kuivila. Uptake, Metabolism, and Elimination of Fungicides from Coated Wheat Seeds in Japanese Quail (Coturnix japonica). Journal of Agricultural and Food Chemistry 2020, 68 (6), 1514-1524. https://doi.org/10.1021/acs.jafc.9b05668Grubbs KJ, Bleich RM, Santa Maria KC, Allen SE, Farag S, Shank EA, Bowers AA. 2017. Large-scale bioinformatics analysis of Bacillus genomes uncovers conserved roles of natural products in bacterial physiology. mSystems 2:e00040-17. doi: 10.1128/mSystems.00040-17.Guillemette T, Iacomi-Vasilescu B, Simoneau P. Conventional and real-time PCR-based assay for detecting pathogenic Alternaria brassicae in cruciferous seed. Plant Dis. 2004;88:490–6. doi: 10.1094/PDIS.2004.88.5.490.Guerriero, G., Hausman, J. F., Strauss, J., Ertan, H., and Siddiqui, K. S. (2015). Destructuring plant biomass: focus on fungal and extremophilic cell wall hydrolases. Plant Sci. 234, 180–193. doi: 10.1016/j.plantsci.2015.02.010Guest D, Brown J, 1997. Infection processes. In: JF Brown, HJ Ogle, eds. Plant Pathogens and Plant Diseases. The Australasian Plant Pathology Society Inc.Guo X, Liu N, Li X, Ding Y, Shang F, Gao Y, Ruan J, Huang Y.. 2015. Red soils harbor diverse culturable actinomycetes that are promising sources of novel secondary metabolites. Löffler FE, editor. Appl Environ Microbiol. 81(9):3086–3103.Guzmán-Guzmán, P., Alemán-Duarte, M. I., Delaye, L., Herrera-Estrella, A., and Olmedo-Monfil, V. (2017). Identification of effector-like proteins in Trichoderma spp. and role of a hydrophobin in the plant-fungus interaction and mycoparasitism. BMC Genet. 18:16. doi: 10.1186/s12863-017-0481-yHaas D, Défago G. Biological control of soil-borne pathogens by fluorescent pseudomonads. Nat Rev Microbiol. 2005 Apr; 3(4):307-19. doi: 10.1038/nrmicro1129.Haith, D. A.; Duffany, M. W. Pesticide runoff loads from lawns and golf courses. J. Environ. Eng. 2007, 133 (4), 435– 446,  DOI: 10.1061/(ASCE)0733-9372(2007)133:4(435)Harwood CR, Mouillon JM, Pohl S, Arnau J. 2018. Secondary metabolite production and the safety of industrially important members of the Bacillus subtilis group. FEMS Microbiol Rev 42:721–738. doi: 10.1093/femsre/fuy028.Hassan HM, Degen D, Jang KH, Ebright RH, Fenical W.. 2015. Salinamide F, new depsipeptide antibiotic and inhibitor of bacterial RNA polymerase from a marine-derived Streptomyces sp. J Antibiot (Tokyo). 68:206–209.Heimpel G. E., Mills N. (2017). Biological Control - Ecology and Applications. Cambridge: Cambridge University Press.Carolin Holtkamp, Trix van Mierlo. Paving a Way towards Food Democratisation: Mechanisms in Contentious Niche Development. Sustainability 2022, 14 (3), 1553.Humpherson-Jones FM. The incidence of Alternaria spp. and Leptosphaeria maculans in commercial brassica seed in the United Kingdom. Plant Pathol. 1985; 34:385–90. doi: 10.1111/j.1365-3059.1985.tb01377.x.Hansen, L. N., & Earle, E. D. (1997). Somatic hybrids between Brassica oleracea L. and Sinapis alba L. with resistance to Alternaria brassicae (Berk.) Sacc. Theoretical and Applied Genetics, 94(8), 1078–1085.Hakala, K.; Hannukkala, A. O.; Huusela-Veistola, E.; Jalli, M.; Peltonen-Sainio, P. Pests and diseases in a changing climate: a major challenge for Finnish crop production. Agric. Food Sci. 2011, 20, 3– 14,  DOI: 10.2137/145960611795163042Howell C.C., Semple K.T., Bending G.D. Isolation and characterisation of azoxystrobin degrading bacteria from soil. Chemosphere. 2014;95:370–378. doi: 10.1016/j.chemosphere.2013.09.048. Huffaker, A., Kaplan, F., Vaughan, M. M., Dafoe, N. J., Ni, X., Rocca, J. R., et al. (2011). Novel acidic sesquiterpenoids constitute a dominant class of pathogen-induced phytoalexins in maize. Plant Physiol. 156, 2082–2097. doi: 10.1104/pp.111.179457Humpherson-Jones, F., & Phelps, K. (1989). Climatic factors influencing spore production in Alternaria brassicae and Alternaria brassicicola. Annals of Applied Biology, 114, 449–458.Iacomi-Vasilescu B, Bataillé-Simoneau N, Campion C, Dongo A, Laurent E, Serandat I, et al. Effect of null mutations in the AbNIK1 gene on saprophytic and parasitic fitness of Alternaria brassicicola isolates highly resistant to dicarboximides fungicides. Plant Pathol. 2008;57:937–47. doi: 10.1111/j.1365-3059.2008.01864.x.Iftikhar Y., Sajid A., Shakeel Q., Ahmad Z., Ul Haq Z. Biological antagonism: A safe and sustainable way to manage plant diseases. In: Ul Haq Z., Ijaz S., editors. Plant Disease Management Strategies for Sustainable Agriculture through Traditional and Modern Approaches. Springer; Cham, Switzerland: 2020. pp. 83–109.Igarashi Y, Iida T, Oku N, Watanabe H, Furihata K, Miyanouchi K.. 2012. Nomimicin, a new spirotetronate-class polyketide from an actinomycete of the genus Actinomadura. J Antibiot (Tokyo). 65: 355–359.Isnansetyo A., Cui L., Hiramatsu K., Kamei Y. Antibacterial activity of 2, 4-diacetylphloroglucinol produced by Pseudomonas sp. AMSN isolated from a marine alga, against vancomycin-resistant Staphylococcus aureus. Int. J. Antimicrob. Agents. 2003;22:545–547. doi: 10.1016/S0924-8579(03)00155-9.Jajić, I., Dudaš, T., Krstović, S., Krska, R., Sulyok, M., Bagi, F., et al. (2019). Emerging fusarium mycotoxins fusaproliferin, beauvericin, enniatins, and moniliformin in serbian maize. Toxins 11:357. doi: 10.3390/toxins11060357Janusz, G., Pawlik, A., Sulej, J., Swiderska-Burek, U., Jarosz-Wilkolazka, A., and Paszczynski, A. (2017). Lignin degradation: microorganisms, enzymes involved, genomes analysis and evolution. FEMS Microbiol. Rev. 41, 941–962. doi: 10.1093/femsre/fux049Jaroszuk-Scise, J., Tyśkiewicz, R., Nowak, A., Nowak, A., Ozimek, E., Majewska, M., et al. (2019). Phytohormones (auxin, gibberellin) and ACC deaminase in vitro synthesized by the Mycoparasitic Trichoderma DEMTkZ3A0 strain and changes in the level of auxin and plant resistance markers in wheat seedlings inoculated with this strain conidia. Int. J. Mol. Sci. 20:4923. doi: 10.3390/ijms20194923Jiang, L., Jeong, J. C., Lee, J. S., Park, J. M., Yang, J. W., Lee, M. H., et al. (2019). Potential of Pantoea dispersa as an effective biocontrol agent for black rot in sweet potato. Sci. Rep. 9:16354. doi: 10.1038/s41598-019-52804-3Jiang Z, Guo L, Chen C, Liu S, Zhang L, Dai S, He Q, You X, Hu X, Tuo L, et al. 2015. Xiakemycin A, a novel pyranonaphthoquinone antibiotic, produced by the Streptomyces sp. CC8-201 from the soil of a karst cave. J Antibiot (Tokyo). 68:771–774.Kaneda M, Kajimura Y. [New antifungal antibiotics, bacillopeptins and fusaricidins]. Yakugaku Zasshi. 2002 Sep;122(9):651-71. Japanese. doi: 10.1248/yakushi.122.651. PMID: 12235857.Kasprzyk, I., Sulborska, A., Nowak, M., Szymańska, A., Kaczmarek, J., Haratym, W., Weryszko-Chmielewska, E., & Jędryczka, M. (2013). Fluctuation range of the concentration of airborne Alternaria conidiospores sampled at different geographical locations in Poland (2010–2011). Acta Agrobotanica, 66, 65–76.Vishab Kesarwani, Vineet Kumar Rai. Upconverting Nanoparticles in the Detection of Fungicides and Plant Viruses. 2022,,, 493-516. https://doi.org/10.1002/9783527834884.ch17Khan R.A.A., Najeeb S., Mao Z., Ling J., Yang Y., Li Y., Xie B. Bioactive secondary metabolites from Trichoderma spp. against phytopathogenic bacteria and koot-Knot nematode. Microorganisms. 2020;8:401. doi: 10.3390/microorganisms8030401.Kobayashi, Y., Maeda, T., Yamaguchi, K., and Kameoka, H. (2018). The genome of Rhizophagus clarus HR1 reveals a common genetic basis for auxotrophy among arbuscular mycorrhizal fungi. BMC Genomics 19:465. doi: 10.1186/s12864-018-4853-0Köhl, J., Van Tongeren, C., Groenenboom-de Haas, B., Van Hoof, R., Driessen, R., & Van Der Heijden, L. (2010). Epidemiology of dark leaf spot caused by Alternaria brassicicola and A. brassicae in organic seed production of cauliflower. Plant Pathology, 59, 358–367.Köhler, H. R.; Triebskorn, R. Wildlife ecotoxicology of pesticides: can we track effects to the population level and beyond?. Science 2013, 341 (6147), 759– 765,  DOI: 10.1126/science.1237591Korres AMN, Buss DS, Ventura JA, Fernandes PMB. (2011). Candida krusei and Kloeckera apis inhibit the causal agent of pineapple fusariosis, Fusarium guttiforme. Fungal Biology, 115: 1251-1258. Krause, K., Henke, C., and Asiimwe, T. (2015). Biosynthesis and secretion of Indole-3-acetic acid and its morphological effects on Tricholoma vaccinum-spruce ectomycorrhiza. Appl. Environ. Microbiol. 81, 7003–7011. doi: 10.1128/AEM.01991-15Kretschmer, M., Klose, J., Kronstad, J. W., Ulbricht, A., Klemmer, S., Schachtschabel, D., et al. (2012). Defects in mitochondrial and peroxisomal β-oxidation influence virulence in the maize pathogen Ustilago maydis. Eukaryot. Cell 11, 1055–1066. doi: 10.1128/EC.00129-12Kunoh H. Endophytic actinomycetes: Attractive biocontrol agents. J. Gen. Plant Pathol. 2002;68:249–252. doi: 10.1007/PL00013084.Kumar, D., Maurya, N., Bharati, Y. K., Kumar, A., Kumar, K., Srivastava, K., Chand, G., Kushwaha, C., Singh, S. K., & Mishra, R. K. (2014). Alternaria blight of oilseed brassicas: A comprehensive review. African Journal of Microbiology Research, 8, 2816–2829.Kubota, M., Abiko, K., Yanagisawa, Y., & Nishi, K. (2006). Frequency of Alternaria brassicicola in commercial cabbage seeds in Japan. Journal of General Plant Pathology, 72, 197–204.Kumar, D., Maurya, N., Bharati, Y. K., Kumar, A., Kumar, K., Srivastava, K., Chand, G., Kushwaha, C., Singh, S. K., & Mishra, R. K. (2014). Alternaria blight of oilseed brassicas: A comprehensive review. African Journal of Microbiology Research, 8, 2816–2829.Lanver, D., Mendoza-Mendoza, A., Brachmann, A., and Kahmann, R. (2010). Sho1 and Msb2-related proteins regulate appressorium development in the smut fungus Ustilago maydis. Plant Cell 22, 2085–2101. doi: 10.1105/tpc.109.073734Lara-Márquez, A., Zavala-Páramo, M. G., López-Romero, E., Calderón-Cortés, N., López-Gómez, R., Conejo-Saucedo, U., et al. (2011). Cloning and characterization of a pectin lyase gene from Colletotrichum lindemuthianum and comparative phylogenetic/structural analyses with genes from phytopathogenic and saprophytic/opportunistic microorganisms. BMC Microbiol. 11:260. doi: 10.1186/1471-2180-11-260Latha S, Sivaranjani G, Dhanasekaran D. 2017. Response surface methodology: A non-conventional statistical tool to maximize the throughput of Streptomyces species biomass and their bioactive metabolites. Crit Rev Microbiol. 43(5):567–582.Lawrence CB, Mitchell TK, Craven KD, Cho Y, Cramer RA Jr, Kim K-H, 2008. At death's door: Alternaria pathogenicity mechanisms. Plant Pathology Journal 24, 101– 11.Łaźniewska J, Macioszek VK, Lawrence CB, Kononowicz AK, 2010. Fight to the death: Arabidopsis thaliana defense response to fungal necrotrophic pathogens. Acta Physiologiae Plantarum 32, 1– 10.Lee L-H, Cheah Y-K, Mohd Sidik S, Ab Mutalib N-S, Tang Y-L, Lin H-P, Hong K.. 2012. Molecular characterization of Antarctic actinobacteria and screening for antimicrobial metabolite production. World J Microbiol Biotechnol. 28:2125–2137.Leitão S., Cerejeira M.J., Van den Brink P.J., Sousa J.P. Effects of azoxystrobin, chlorothalonil, and ethoprophos on the reproduction of three terrestrial invertebrates using a natural Mediterranean soil. Appl. Soil Ecol. 2014;76:124–131. doi: 10.1016/j.apsoil.2013.12.013. Lefrancq, M.; Imfeld, G.; Payraudeau, S.; Millet, M. Kresoxim methyl deposition, drift and runoff in a vineyard catchment. Sci. Total Environ. 2013, 442, 503– 508,  DOI: 10.1016/j.scitotenv.2012.09.082Leplat J., Friberg H., Abid M., Steinberg C. Survival of Fusarium graminearum, the causal agent of Fusarium head blight. A review. Agron. Sustain. Dev. 2013;33:97–111.Leroch M., Kretschmer M., Hahn M. Fungicide resistance phenotypes of Botrytis cinerea isolates from commercial vineyards in South West Germany. J. Phytopathol. 2011;159:63–65. doi: 10.1111/j.1439-0434.2010.01719.x. Li, J., Gu, F., Wu, R., Yang, J., and Zhang, K. (2017). Phylogenomic evolutionary surveys of subtilase superfamily genes in fungi. Sci. Rep. 7:45456. doi: 10.1038/srep45456Lievens, L., Pollier, J., Goossens, A., Beyaert, R., and Staal, J. (2017). Abscisic acid as pathogen effector and immune regulator. Front. Plant Sci. 8:587. doi: 10.3389/fpls.2017.00587Linde CC, Liles JA, Thrall PH, 2010. Expansion of genetic diversity in randomly mating founder populations of Alternaria brassicicola infecting Cakile maritima in Australia. Applied and Environmental Microbiology 76, 1946– 54.Liu, L., Gueguen-Chaignon, V., Gonçalves, I. R., Rascle, C., Rigault, M., Dellagi, A., et al. (2019). A secreted metal-binding protein protects necrotrophic phytopathogens from reactive oxygen species. Nat. Commun. 10:4853. doi: 10.1038/s41467-019-12826-xLoc, N. H., Huy, N. D., Quang, H. T., Lan, T. T., and Thu, H. T. T. (2019). Characterisation and antifungal activity of extracellular chitinase from a biocontrol fungus, Trichoderma asperellum PQ34. Mycology 11, 38–48. doi: 10.1080/21501203.2019.1703839Loo J.A. Ecological impacts of non-native invertebrates and fungi on terrestrial ecosystems. Biol. Invasions. 2009;11:81–96. doi: 10.1007/s10530-008-9321-3. Lou, J., Fu, L., Peng, Y., and Zhou, L. (2013). Metabolites from Alternaria fungi and their bioactivities. Molecules 18, 5891–5935. doi: 10.3390/molecules18055891N S Lyakhovchenko, I A Nikishin, E D Gubina, D A Pribylov, V Y Senchenkov, A A Sirotin and I P Solyanikova Assessment of the antifungal activity of the violacein-forming strain Janthinobacterium sp. B-3515 against the mould fungus Alternaria brassicicola F-1864 // IOP Conf. Series: Earth and Environmental Science 908 (2021) 012006 doi:10.1088/1755-1315/908/1/012006Lyu, X., Shen, C., Fu, Y., Xie, J., Jiang, D., Li, G., et al. (2015). Comparative genomic and transcriptional analyses of the carbohydrate-active enzymes and secretomes of phytopathogenic fungi reveal their significant roles during infection and development. Sci. Rep. 5:15565. doi: 10.1038/srep15565Ma, H., Zhang, B., Gai, Y., Sun, X., Chung, K. R., and Li, H. (2019). Cell-wall-degrading enzymes required for virulence in the host selective toxin-producing necrotroph alternaria alternata of citrus. Front. Microbiol. 10:2514. doi: 10.3389/fmicb.2019.02514Cláudia Machado, Ana P. Cuco, Fernanda Cássio, Justyna Wolinska, Bruno B. Castro. Antiparasitic potential of agrochemical fungicides on a non-target aquatic model (Daphnia × Metschnikowia host-parasite system). Science of The Total Environment 2022, 833, 155296. https://doi.org/10.1016/j.scitotenv.2022.155296R. Macirella, V. Curcio, A. I. M. Ahmed, D. Pellegrino, E. Brunelli. Effect of short-term exposure to low concentration of tebuconazole: morphological, histometric and functional modifications in Danio rerio liver. The European Zoological Journal 2022, 89 (1), 331-345. https://doi.org/10.1080/24750263.2022.2043469Martínez JA. Natural fungicides obtained from plants. (2012). Chapter 1. In: Dhanasekaran D, Thajuddin N, Panneerselvam A (Eds). Fungicides for plant and animal diseases. Europe: InTech, 3-28.Martínez IM, Chrispeels MJ. Genomic analysis of the unfolded protein response in Arabidopsis shows its connection to important cellular processes. Plant Cell. 2003;15:561–76. doi: 10.1105/tpc.007609. Marin-Menguiano, M., Morenosanchez, I., Barrales, R. R., Fernandezalvarez, A., and Ibeas, J. I. (2019). N-glycosylation of the protein disulfide isomerase Pdi1 ensures full Ustilago maydis virulence. PLoS Pathog. 15:e1007687. doi: 10.1371/journal.ppat.1007687Maltby, L.; Brock, T. C. M.; van den Brink, P. J. Fungicide risk assessment for aquatic ecosystems: importance of interspecific variation, toxic mode of action, and exposure regime. Environ. Sci. Technol. 2009, 43 (19), 7556– 7563,  DOI: 10.1021/es901461cMcRoberts N, Lennard JH, 1996. Pathogen behavior and plant cell reaction in interactions between Alternaria species and leaves of host and nonhost plants. Plant Pathology 45, 742– 52.Meena, P., Meena, R., Chattopadhyay, C., & Kumar, A. (2004). Identification of critical stage for disease development and biocontrol of Alternaria blight of Indian mustard (Brassica juncea). Journal of Phytopathology, 152, 204–209.Medema MH, Blin K, Cimermancic P, de Jager V, Zakrzewski P, Fischbach MA, Weber T, Takano E, Breitling R.. 2011. antiS-MASH: rapid identification, annotation and analysis of secondary metabolite biosynthesis gene clusters in bacterial and fungal genome sequences. Nucleic Acids Res. 39:W339–W346.Medema MH, Fischbach MA.. 2015. Computational approaches to natural product discovery. Nat Chem Biol. 11:639–648.Michereff, S. J., Noronha, M. A., Xavier Filha, M. S., Câmara, M. P., & Reis, A. (2012). Survey and prevalence of species causing Alternaria leaf spots on Brassica species in Pernambuco. Horticultura Brasileira, 30, 345–348.Eliana Monteiro, Berta Gonçalves, Isabel Cortez, Isaura Castro. The Role of Biostimulants as Alleviators of Biotic and Abiotic Stresses in Grapevine: A Review. Plants 2022, 11 (3), 396. https://doi.org/10.3390/plants11030396Moore D., Robson G.D., Trinci A.P.J. 21st Century Guidebook to Fungi. 2nd ed. Cambridge University Press; Cambridge, UK: 2020. pp. 1–610.Mostafalou S., Abdollahi M. Pesticides and human chronic diseases: Evidences, mechanisms, and perspectives. Toxicol. Appl. Pharmacol. 2013;268:157–177. doi: 10.1016/j.taap.2013.01.025. Mota S.F., Padua P.F., Ferreira A.N., Gomes L.D.W., Dias M.A., Souza E.A., Pereira O.L., Cardoso P.G. Biological control of common bean diseases using endophytic Induratia spp. Biol. Control. 2021;159:104629. doi: 10.1016/j.biocontrol.2021.104629. Muller T., Ruppel S. Progress in cultivation-independent phyllosphere microbiology. FEMS Microbiol. Ecol. 2014;87:2–17. doi: 10.1111/1574-6941.12198. Müller T., Behrendt U., Ruppel S., von der Waydbrink G., Müller M.E. Fluorescent pseudomonads in the phyllosphere of wheat: Potential antagonists against fungal phytopathogens. Curr. Microbiol. 2016;72:383–389. doi: 10.1007/s00284-015-0966-8.Myers J.M., Ramsey J.P., Blackman A.L., Nichols A.E., Minbiole K.P., Harris R.N. Synergistic inhibition of the lethal fungal pathogen Batrachochytrium dendrobatidis: The combined effect of symbiotic bacterial metabolites and antimicrobial peptides of the frog Rana muscosa. J. Chem. Ecol. 2012;38:958–965. doi: 10.1007/s10886-012-0170-2.Nettles, R.; Watkins, J.; Ricks, K.; Boyer, M.; Licht, M.; Atwood, L. W.; Peoples, M.; Smith, R. G.; Mortensen, D. A.; Koide, R. T. Influence of pesticide seed treatments on rhizosphere fungal and bacterial communities and leaf fungal endophyte communities in maize and soybean. Appl. Soil Ecol. 2016, 102, 61– 69,  DOI: 10.1016/j.apsoil.2016.02.008Nowicki, M., Nowakowska, M., Niezgoda, A., & Kozik, E. (2012). Alternaria black spot of crucifers: Symptoms, importance of disease, and perspectives of resistance breeding. Vegetable Crops Research Bulletin, 76, 5–19.Poomraphie Nuntawong, Waraporn Putalun, Hiroyuki Tanaka, Satoshi Morimoto, Seiichi Sakamoto. Lateral flow immunoassay for small-molecules detection in phytoproducts: a review. Journal of Natural Medicines 2022, 76 (3) , 521-545. https://doi.org/10.1007/s11418-022-01605-6Oerke, E.-C. Crop losses to pests. J. Agric. Sci. 2006, 144 (1), 31– 43,  DOI: 10.1017/S0021859605005708 Oh D, Poulsen M, Currie CR, Clardy J.. 2011. Sceliphrolactam, a polyene macrocyclic lactam from a wasp-associated. Org Lett. 13:15–18Oka K, Akamatsu H, Kodama M, Nakajima H, Kawada T, Otani H, 2005. Host-specific AB-toxin production by germinating conidia of Alternaria brassicicola is induced by a host-derived oligosaccharide. Physiological and Molecular Plant Pathology 66, 12– 9.Ökmen, B., Mathow, D., Hof, A., Lahrmann, U., Aßmann, D., and Doehlemann, G. (2018). Mining the effector repertoire of the biotrophic fungal pathogen Ustilago hordei during host and non-host infection. Mol. Plant Pathol. 19, 2603–2622. doi: 10.1111/mpp.12732Onaka H. 2017. Novel antibiotic screening methods to awaken silent or cryptic secondary metabolic pathways in actinomycetes. J Antibiot (Tokyo). 70(8):865–870.Ongena M, Jacques P. 2008. Bacillus lipopeptides: versatile weapons for plant disease biocontrol. Trends Microbiol 16:115–125. doi: 10.1016/j.tim.2007.12.009.Otani H, Kohnobe A, Kodama M, Kohmoto K, 1998. Production of a host-specific toxin by germinating conidia of Alternaria brassicicola. Physiological and Molecular Plant Pathology 52, 285– 95.Panstruga, R., and Kuhn, H. (2019). Mutual interplay between phytopathogenic powdery mildew fungi and other microorganisms. Mol. Plant Pathol. 20, 463–470. doi: 10.1111/mpp.12771Pearson B.L., Simon J.M., McCoy E.S., Salazar G., Fragola G., Zylka M.J. Identification of chemicals that mimic transcriptional changes associated with autism, brain aging and neurodegeneration. Nat. Commun. 2016;7:11173. doi: 10.1038/ncomms11173Peix A, Ramírez-Bahena MH, Velázquez E. The current status on the taxonomy of Pseudomonas revisited: an update. Infect genet envol. 2018;57:106–116. doi: 10.1016/j.meegid.2017.10.026.Pereira, J. L., Queiroz, R. M., Charneau, S. O., Felix, C. R., Ricart, C. A. O., Silva, F. L., et al. (2014). Analysis of Phaseolus vulgaris response to its association with Trichoderma harzianum (ALL-42) in the presence or absence of the phytopathogenic fungi Rhizoctonia solani and Fusarium solani. PLoS ONE 9:e98234. doi: 10.1371/journal.pone.0098234Penha RO, Vandenberghe LPS, Faulds C, Soccol VT, Soccol CR. Bacillus lipopeptides as powerful pest control agents for a more sustainable and healthy agriculture: recent studies and innovations. Planta. 2020 Feb 21;251(3):70. doi: 10.1007/s00425-020-03357-7. Pengfei Xue, Xiaowei Liu, Liuqing Zhao, Jingran Zhang, Zeying He. Integrating high-throughput sequencing and metabolomics to investigate the stereoselective responses of soil microorganisms to chiral fungicide cis-epoxiconazole. Chemosphere 2022, 300 , 134198. https://doi.org/10.1016/j.chemosphere.2022.134198Pochon S, Terrasson E, Guillemette T, Iacomi-Vasilescu B, Georgeault S, Juchaux M, Berruyer R, Debeaujon I, Simoneau P, Campion C. The Arabidopsis thaliana-Alternaria brassicicola pathosystem: A model interaction for investigating seed transmission of necrotrophic fungi. Plant Methods. 2012;8:16. doi: 10.1186/1746-4811-8-16.Proctor, R. H., McCormick, S. P., Kim, H. S., Cardoza, R. E., Stanley, A. M., Lindo, L., et al. (2018). Evolution of structural diversity of trichothecenes, a family of toxins produced by plant pathogenic and entomopathogenic fungi. PLoS Pathog. 14:e1006946. doi: 10.1371/journal.ppat.1006946Pusztahelyi, T., Holb, I. J., and Pócsi, I. (2015). Secondary metabolites in fungus-plant interactions. Front. Plant Sci. 6:573. doi: 10.3389/fpls.2015.00573Qin, J., Wang, K., Sun, L., Xing, H., Wang, S., Li, L., et al. (2018). The plant-specific transcription factors CBP60g and SARD1 are targeted by a Verticillium secretory protein VdSCP41 to modulate immunity. elife 7:e34902. doi: 10.7554/eLife.34902.030Quintanilha-Peixoto, G., Torres, R. O., Reis, I. M. A., de Oliveira, T. A. S., Bortolini, D. E., Duarte, E. A. A., et al. (2019). Calm before the storm: a glimpse into the secondary metabolism of Aspergillus welwitschiae, the etiologic agent of the sisal bole rot. Toxins 11:631. doi: 10.3390/toxins11110631мRahman M., Islam T., Jett L., Kotcon J. Biocontrol agent, biofumigation, and grafting with resistant rootstock suppress soil-borne disease and improve yield of tomato in West Virginia. Crop Prot. 2021;145:105630. doi: 10.1016/j.cropro.2021.105630Rajnisz A, Guśpiel A, Postek M, Ziemska J, Laskowska A, Rabczenko D, Solecka J.. 2016. Characterization and optimization of biosynthesis of bioactive secondary metabolites produced by Streptomyces sp. 8812. Pol J Microbiol. 65:51–61.Rebek E.J., Frank S.D., Royer T.A., Bográn C.E. Alternatives to chemical control of insect pests. In: Solonesky S., Larramendy M.L., editors. Insecticides—Basic and Other Applications. InTech; London, UK: 2012. pp. 171–196.Reilly, T. J.; Smalling, K. L.; Orlando, J. L.; Kuivila, K. M. Occurrence of boscalid and other selected fungicides in surface water and groundwater in three targeted use areas in the United States. Chemosphere 2012, 89 (3), 228– 234,  DOI: 10.1016/j.chemosphere.2012.04.023Wafa Rhimi, Jairo Mendoza-Roldan, Chioma Inyang Aneke, Adriana Mosca, Domenico Otranto, Ana Alastruey-Izquierdo, Claudia Cafarchia. Role of lizards as reservoirs of pathogenic yeasts of zoonotic concern. Acta Tropica 2022, 231 , 106472. https://doi.org/10.1016/j.actatropica.2022.106472Rodrigo S., Santamaría O., Halecker S., Lledó S., Stadler M. Antagonism between Byssochlamys spectabilis (anamorph Paecilomyces variotii) and plant pathogens: Involvement of the bioactive compounds produced by the endophyte. Ann. Appl. Biol. 2017;171:464–476. doi: 10.1111/aab.12388.Rodrigues E.T., Lopes I., Pardal M.A. Occurrence, fate and effects of azoxystrobin in aquatic ecosystems: A review. Environ. Int. 2013;53:18–28. doi: 10.1016/j.envint.2012.12.005. Romeralo C., Santamaría O., Pando V., Diez J.J. Fungal endophytes reduce necrosis length produced by Gremmeniella abietina in Pinus halepensis seedlings. Biol. Control. 2015;80:30–39. doi: 10.1016/j.biocontrol.2014.09.010.Rotem J, 1994. The Genus Alternaria: Biology, Epidemiology, and Pathogenicity. St Paul, MN, USA: APS Press.Rothrock C.S., Gottlieb D. Role of antibiosis in antagonism of Streptomyces hygroscopicus var. geldanus to Rhizoctonia solani in soil. Can. J. Microbiol. 1984;30:1440–1447. doi: 10.1139/m84-230.Santos, R. J., Zivanovic, M., Costa de Novaes, M. I., and Chen, Z. Y. (2020). The AVR4 effector is involved in cercosporin biosynthesis and likely affects the virulence of Cercospora cf. flagellaris on soybean. Mol. Plant Pathol. 21, 53–65. doi: 10.1111/mpp.12879P. Santhoshkumar, Balamurugan Thirumalraj, Balasubramanian Sriram, K. Karuppasamy, Dhanasekaran Vikraman, A. Kathalingam, Heeman Choe, Hyun-Seok Kim. Mesoporous SnSe2-grafted N-doped carbon composites with integrated flaky structure for electrochemical sensing of carbendazim. Ceramics International 2022, 48 (11) , 16023-16032.Satish S, Mohana DC, Ranhavendra MP, Raveesha KA. (2007). Antifungal activity of some plant extracts against important seed borne pathogens of Aspergillus sp. J Agr Sci Tech, 3(1): 109-119.Shang, Y., Xiao, G., Zheng, P., Cen, K., Zhan, S., and Wang, C. (2016). Divergent and convergent evolution of fungal pathogenicity. Genome Biol. Evol. 8, 1374–1387. doi: 10.1093/gbe/evw082Scholze, P., and Ding, Y. (2005). Manifestation of black spot disease (Alternaria brassicicola) in intact leaves and detached leaf segments of cabbage plants grown in nutrient solutions without N, P, K and Ca/Manifestierung der Schwarzfleckigkeit (Alternaria brassicicola) auf intakten Blättern und isolierten Blattsegmenten von Kohlpflanzen, die mit Nährlösungen ohne N, P, K und Ca ernährt wurden. Zeitschrift für Pflanzenkrankheiten und Pflanzenschutz/Journal of Plant Diseases and Protection:562–572.Schiøtt, M., Rogowska-Wrzesinska, A., Roepstorff, P., and Boomsma, J. J. (2010). Leaf-cutting ant fungi produce cell wall degrading pectinase complexes reminiscent of phytopathogenic fungi. BMC Biol. 8:156. doi: 10.1186/1741-7007-8-156Seagraves, M. P.; Lundgren, J. G. Effects of neonicitinoid seed treatments on soybean aphid and its natural enemies. J. Pest Sci. 2012, 85 (1), 125– 132,  DOI: 10.1007/s10340-011-0374-Silva-Moreno E, Brito-Echeverría J, López M, Ríos J, Balic I, Campos-Vargas R, Polaco R. (2016). Effect of cuticular waxes compounds from table grapes on growth, germination and gene expression in Botrytis cinerea. World J Microbiol Biotechnol,32: 68-74. Singh B, Gupta V, Passari A.. 2018. New and future developments in microbial biotechnology and bioengineering. Actinobacteria: diversity and biotechnological applications. Amsterdam, Oxford, Cambridge: Elsevier.Smalling, K. L.; Kuivila, K. M.; Orlando, J. L.; Phillips, B. M.; Anderson, B. S.; Siegler, K.; Hunt, J. W.; Hamilton, M. Environmental fate of fungicides and other current-use pesticides in a central California estuary. Mar. Pollut. Bull. 2013, 73 (1), 144– 153,  DOI: 10.1016/j.marpolbul.2013.05.028Smalling, K. L.; Reilly, T. J.; Sandstrom, M. W.; Kuivila, K. M. Occurrence and persistence of fungicides in bed sediments and suspended solids from three targeted use areas in the United States. Sci. Total Environ. 2013, 447C, 179– 185,  DOI: 10.1016/j.scitotenv.2013.01.021Solecka J, Zajko J, Postek M, Rajnisz A. 2012. Biologically active secondary metabolites from Actinomycetes. Cent Eur J Biol. 7:373–390.Sonenshein AL, et al. Bacillus subtilis and its closest relatives: From genes to cells. ASM Press; 2002Soyer, J. L., Hamiot, A., Ollivier, B., Balesdent, M., Rouxel, T., and Fudal, I. (2015). The APSES transcription factor LmStuA is required for sporulation, pathogenic development and effector gene expression in Leptosphaeria maculans. Mol. Plant Pathol. 16, 1000–1005. doi: 10.1111/mpp.12249Shrestha, S. K., Munk, L., & Mathur, S. B. (2005). Role of weather on Alternaria leaf blight disease and its effect on yield and yield components of mustard. Nepal Agricultural Research Journal, 6, 62–72Stackebrandt E., Rainey F.A., WardRainey N.L. Proposal for a new hierarchic classification system, actinobacteria classis. Int. J. Syst. Bacteriol. 1997; 47:479–491. doi: 10.1099/00207713-47-2-479.Stein T. 2005. Bacillus subtilis antibiotics: structures, syntheses and specific functions. Mol Microbiol 56:845–857. doi: 10.1111/j.1365-2958.2005.04587.x.Steinke K, Mohite OS, Weber T, Kovács ÁT. Phylogenetic Distribution of Secondary Metabolites in the Bacillus subtilis Species Complex. mSystems. 2021;6(2):e00057-21. Published 2021 Mar 9. doi:10.1128/mSystems.00057-21Stopnisek, N., Zühlke, D., Carlier, A., Barberán, A., Fierer, N., Becher, D., et al. (2016). Molecular mechanisms underlying the close association between soil Burkholderia and fungi. ISME J. 10, 253–264. doi: 10.1038/ismej.2015.73Strange, R. N.; Scott, P. R. Plant disease: a threat to global food security. Annu. Rev. Phytopathol. 2005, 43, 83– 116,  DOI: 10.1146/annurev.phyto.43.113004.133839Ignace Sawadogo, Adama Paré, Donatien Kaboré, Didier Montet, Noël Durand, Jalloul Bouajila, Elisabeth P. Zida, Hagrétou Sawadogo-Lingani, Philippe Augustin Nikiéma, Roger Honorat Charles Nebié, Imaël Henri Nestor Bassolé. Antifungal and Antiaflatoxinogenic Effects of Cymbopogon citratus, Cymbopogon nardus, and Cymbopogon schoenanthus Essential Oils Alone and in Combination. Journal of Fungi 2022, 8 (2), 117. https://doi.org/10.3390/jof8020117Talibi I, Askarne L, Boubaker H, Boudyach EH, Msanda F, Saadi B, Aoumar AAB. (2012). Antifungal activity of some Moroccan plants against Geotrichum candidum, the causal agent of postharvest citrus sour rot. Crop protection, 35: 41-46. Tan, K. C., and Oliver, R. P. (2017). Regulation of proteinaceous effector expression in phytopathogenic fungi. PLoS Pathog. 13:e1006241. doi: 10.1371/journal.ppat.1006241Thong WL, Shin-ya K, Nishiyama M, Kuzuyama T.. 2015. Methylbenzene-containing polyketides from a Streptomyces that spontaneously acquired rifampicin resistance: structural elucidation and biosynthesis. J Nat Prod. 79(4):857–864.Thynne, E., Saur, I. M., Simbaqueba, J., Ogilvie, H. A., Gonzalez-cendales, Y., Mead, O., et al. (2017). Fungal phytopathogens encode functional homologues of plant rapid alkalinization factor (RALF) peptides. Mol. Plant Pathol. 18, 811–824. doi: 10.1111/mpp.12444Tilocca, B., Cao, A., and Migheli, Q. (2020). Scent of a killer: microbial volatilome and its role in the biological control of plant pathogens. Front. Microbiol. 11:41. doi: 10.3389/fmicb.2020.00041Thomma BPHJ, 2003. Alternaria spp.: from general saprophyte to specific parasite. Molecular Plant Pathology 4, 225– 36.Tomlin C.D.S. The Pesticide Manual. British Crop Protection Council; Farnham, UK: 2000.Vassilios Triantafyllidis, Chariklia Kosma, Ioannis Konstantinos Karabagias, Anastasios Zotos, Antonios Pittaras, George Kehayias. Fungicides in Europe During the Twenty-first Century: a Comparative Assessment Using Agri-environmental Indices of EU27. Water, Air, & Soil Pollution 2022, 233 (2) https://doi.org/10.1007/s11270-022-05529-5van den Bosch, F.; Paveley, N.; van den Berg, F.; Hobbelen, P.; Oliver, R. Mixtures as a fungicide resistance management tactic. Phytopathology 2014, 104 (12), 1264– 1273,  DOI: 10.1094/PHYTO-04-14-0121-RVWvan Lenteren J. C., Bolckmans K., Köhl J., Ravensberg W. J., Urbaneja A. (2018). Biological control using invertebrates and microorganisms: plenty of new opportunities. BioControl 63 39–59. 10.1007/s10526-017-9801-4Vidhyasekaran P. 2008. Fungal pathogenesis in plant crops: molecular biology and host defense mechanisms, 2nd ed CRC Press, New York, NY.Vinale F., Sivasithamparam K., Ghisalberti E.L., Woo S.L., Nigro M., Marra R. Trichoderma secondary metabolites active on plants and fungal pathogens. Open Mycol. J. 2008;8:127–139. doi: 10.2174/1874437001408010127.Vincent, D., Rafiqi, M., and Job, D. (2020). The multiple facets of plant-fungal interactions revealed through plant and fungal secretomics. Front. Plant Sci. 10:1626. doi: 10.3389/fpls.2019.01626Vitorino, L. C., Silva, F. O. D., Cruvinel, B. G., Bessa, L. A., Rosa, M., Souchie, E. L., et al. (2020). Biocontrol Potential of Sclerotinia sclerotiorum and physiological changes in soybean in response to Butia archeri palm rhizobacteria. Plants 9:64. doi: 10.3390/plants9010064Vizcaino J.A., Sanz L., Cardoza R.E., Monte E., Gutierrez S. Detection of putative peptide synthetase genes in Trichoderma species. Application of this method to the cloning of a gene from T. harzianum CECT 2413. FEMS Microbiol. Lett. 2005;244:139–148. doi: 10.1016/j.femsle.2005.01.036.Walsh C. Where will new antibiotics come from? Nat. Rev. Microbiol. 2003;1:65–70. doi: 10.1038/nrmicro727.Wang, M., Yang, X., Ruan, R., Fu, H., and Li, H. (2018). Csn5 is required for the conidiogenesis and pathogenesis of the Alternaria alternata tangerine pathotype. Front. Microbiol. 9:508. doi: 10.3389/fmicb.2018.00508Wang, Y., Ji, D., Chen, T., Li, B., Zhang, Z., Qin, G., et al. (2019b). Production, signaling, and scavenging mechanisms of reactive oxygen species in fruit–pathogen interactions. Int. J. Mol. Sci. 20:2994. doi: 10.3390/ijms20122994Warming T.P., Mulderij G., Christoffersen K.S. Clonal variation in physiological responses of Daphnia magna to the strobilurin fungicide azoxystrobin. Environ. Toxicol. Chem. 2009;28:374–380. doi: 10.1897/08-279.1. Weller D.M., Landa B., Mavrodi O., Schroeder K., De La Fuente L., Blouin Bankhead S., Allende Molar R., Bonsall R., Mavrodi D., Thomashow L. Role of 2, 4-diacetylphloroglucinol-producing fluorescent Pseudomonas spp. in the defense of plant roots. Plant Biol. 2007;9:4–20. doi: 10.1055/s-2006-924473.Wick, A.; Fink, G.; Ternes, T. A. Comparison of electrospray ionization and atmospheric pressure chemical ionization for multi-residue analysis of biocides, UV-filters and benzothiazoles in aqueous matrices and activated sludge by liquid chromatography–tandem mass spectrometry. J. Chromatogr. A 2010, 1217 (14), 2088– 2103,  DOI: 10.1016/j.chroma.2010.01.079Wink J, Mohammadipanah F, Hamedi J, editors. 2017. Biology and Biotechnology of Actinobacteria. Cham (Switzerland): Springer Nature.Winstanley C, O’Brien S, Brockhurst MA. Pseudomonas aeruginosa evolutionary adaptation and diversification in cystic fibrosis chronic lung infections. Trends Microbiol. 2016;24(5):327–337. doi: 10.1016/j.tim.2016.01.008.Jakob Wolfram, Sebastian Stehle, Sascha Bub, Lara L. Petschick, Ralf Schulz. Insecticide Risk in US Surface Waters: Drivers and Spatiotemporal Modeling. Environmental Science & Technology 2019, 53 (20) , 12071-12080. doi.org/10.1021/acs.est.9b04285Xiao K., Kinkel L.L., Samac D.A. Biological control of Phytophthora root rots on alfalfa and soybean with Streptomyces. Biol. Control. 2002;23:285–295. doi: 10.1006/bcon.2001.1015Xu J, Gu K, Zhang D-J, Li Y-G, Tian L.. 2017. Ghanamycins A and B, two novel γ-butyrolactones from marine-derived Streptomyces ghanaensis TXC6-16. J Antibiot (Tokyo). 70:733–736.Yakti, W., Kovács, G. M., and Franken, P. (2019). Differential interaction of the dark septate endophyte Cadophora sp. and fungal pathogens in vitro and in planta. FEMS Microbiol. Ecol. 95:fiz164. doi: 10.1093/femsec/fiz164Yang, Y., Fang, A., Yu, Y., Bi, C., and Zhou, C. (2019). Integrated transcriptomic and secretomic approaches reveal critical pathogenicity factors in Pseudofabraea citricarpa inciting citrus target spot. Microb. Biotechnol. 12, 1260–1273. doi: 10.1111/1751-7915.13440Yang, J., Guo, W., Wang, J., Yang, X., Zhang, Z., and Zhao, Z. (2020). T-2 toxin-induced oxidative stress leads to imbalance of mitochondrial fission and fusion to activate cellular apoptosis in the human liver 7702 cell line. Toxins 12:43. doi: 10.3390/toxins12010043Yang J, Yang Z, Yin Y, Rao M, Liang Y, Ge M. 2016. Three novel polyene macrolides isolated from cultures of Streptomyces lavenduligriseus. J Antibiot (Tokyo). 69:62–65.Yin, Z., Ke, X., Kang, Z., and Huang, L. (2016). Apple resistance responses against Valsa mali revealed by transcriptomics analyses. Physiol. Mol. Plant P. 93, 85–92. doi: 10.1016/j.pmpp.2016.01.004Younes M. Rashad, Elsayed S. Abdel Razik, Doaa B. Darwish. Essential oil from Lavandula angustifolia elicits expression of three SbWRKY transcription factors and defense-related genes against sorghum damping-off. Scientific Reports 202212 (1)Yu, J., Li, T., Tian, L., Tang, C., Klosterman, S. J., Tian, C., et al. (2019). Two Verticillium dahliae MAPKKKs, VdSsk2 and VdSte11, have distinct roles in pathogenicity, microsclerotial formation, and stress adaptation. mSphere 4:e00426-19. doi: 10.1128/mSphere.00426-19Zeilinger, S., Gupta, V. K., Dahms, T. E., Silva, R. N., Singh, H. B., Upadhyay, R. S., et al. (2016). Friends or foes? Emerging insights from fungal interactions with plants. FEMS Microbiol. Rev. 40, 182–207. doi: 10.1093/femsre/fuv045Zhang, H., Li, Y., Dickman, M. B., and Wang, Z. (2019). Cytoprotective Co-chaperone BcBAG1 is a component for fungal development, virulence, and unfolded protein response (UPR) of Botrytis cinerea. Front. Microbiol. 10:685. doi: 10.3389/fmicb.2019.00685Zhang, Q., Gao, X., Ren, Y., Ding, X., Qiu, J., Li, N., et al. (2018). Improvement of verticillium wilt resistance by applying arbuscular mycorrhizal fungi to a cotton variety with high symbiotic efficiency under field conditions. Int. J. Mol. Sci. 19:241. doi: 10.3390/ijms19010241Zhao, H., Zhou, T., Xie, J., Cheng, J., Jiang, D., and Fu, Y. (2020). Host Transcriptional Response of Sclerotinia sclerotiorum Induced by the Mycoparasite Coniothyrium minitans. Front. Microbiol. 11, 183. doi: 10.3389/fmicb.2020.00183Zhao, Z., Liu, H., Wang, C., and Xu, J. R. (2013). Comparative analysis of fungal genomes reveals different plant cell wall degrading capacity in fungi. BMC Genom. 14:274. doi: 10.1186/1471-2164-14-274Zhao X, Kuipers OP. 2016. Identification and classification of known and putative antimicrobial compounds produced by a wide variety of Bacillales species. BMC Genomics 17:882. doi: 10.1186/s12864-016-3224-y.Zhenyu Tian, Katherine T. Peter, Alex D. Gipe, Haoqi Zhao, Fan Hou, David A. Wark, Tarang Khangaonkar, Edward P. Kolodziej, C. Andrew James. Suspect and Nontarget Screening for Contaminants of Emerging Concern in an Urban Estuary. Environmental Science & Technology 2020, 54 (2) , 889-901. https://doi.org/10.1021/acs.est.9b06126ПРИЛОЖЕНИЕТаблица 1. Морфологические и физиолого-биохимические характеристики штаммов бактерий, выделенных из почвы№ изолятаОписание колонийОписание клетокНаличие эндоспорОкрашивание по ГрамуТест Хью-ЛейфсонаОксидазаМикроорганизм12 мм, кремовые, сухие, круглые, край волнистый. 0,5-3 мкм, подвижные палочки++F+Bacillus sp.23 мм, желтоватые, блестящие, круглые.1-3 мкм, подвижные палочки--O+Pseudomonas sp.31 мм, белые, блестящие, круглые, край ровный0,5-3 мкм, подвижные палочки++F-Bacillus sp.45 мм, кремовые, блестящие, выпуклые, край ровный.1-3 мкм, подвижные палочки++F-Bacillus sp.55 мм, бесцветные, матовые, морщинистые, круглые.0,6-3 мкм, подвижные палочки++F+Bacillus sp.61 мм, белые, сухие, круглые, край ровный, образуют мицелий1-3 мкм, подвижные палочки-+O-Streptomyces sp.74 мм, беловатые, блестящие, выпуклые, круглые, край ровный1-4 мкм, подвижные палочки++F+Bacillus sp.83 мм, желтоватые, сухие, сросшиеся с агаром, круглые, край неровный.0,7-4 мкм, подвижные палочки-+O+Pseudomonas sp.91 мм, белые, блестящие, круглые, край ровный0,8-3 мкм, подвижные палочки++F+Bacillus sp.105 мм, кремовые, гладкие, выпуклые, круглые, край ровный.1-4 мкм, подвижные палочки-+O+Pseudomonas sp.111 мм, желтоватые, матовые, круглые, край ровный1-3 мкм, подвижные палочки++F+Bacillus sp.125 мм, бежевые, блестящие, круглые, край неровный. 1-5 мкм, подвижные палочки++F+Bacillus sp.131 мм, белые, блестящие, круглые, край ровный.1-2 мкм, подвижные палочки++F+Bacillus sp.141 мм, кремовые, сухие, круглые, край ровный0,7-4 мкм, подвижные палочки++F+Bacillus sp.156 мм, белые, блестящие, плоские, край неровный.0,5-4 мкм, подвижные палочки-+O+Pseudomonas sp.165 мм, белые, матовые, круглые, расползающиеся.1-5 мкм, подвижные палочки++F+Bacillus sp.171 мм, белые, блестящие, круглые, край ровный.0,5-3 мкм, подвижные палочки-+О+Pseudomonas sp.182 мм, кремовые, сухие, круглые, край ровный. 0,6-3 мкм, подвижные палочки++F+Bacillus sp.195 мм, желтоватые, матовые, круглые, расползающиеся. Воздушный мицелий1-5 мкм, палочки-+O-Streptomyces sp.203 мм, бесцветные, сухие, морщинистые, вросшие в агар, край неровный0,5-3 мкм, палочки, кокки++F-Arthrobacter sp.212 мм, беловатые, блестящие, край ровный.1-3 мкм, подвижные палочки++F+Bacillus sp.223 мм, кремовые, матовые, круглые, расползающиеся.0,5 мкм, неподвижные кокки++F+Micrococcus sp.231 мм, белые, блестящие, круглые, край ровный0,5-2 мкм, подвижные палочки++F+Bacillus sp.245 мм, кремовые, гладкие, круглые, край неровный 1 мкм, неподвижные кокки-+F+Micrococcus sp.253 мм, беловатые, сухие, круглые, край неровный.0,5-2 мкм, подвижные палочки++F+Bacillus sp.261 мм, белые, блестящие, круглые, край ровный1-3 мкм, подвижные палочки-+О+Pseudomonas sp.271 мм, кремовые, матовые, вросшие в агар, край ровный.1-3 мкм, подвижные палочки++F+Bacillus sp.285 мм, белые, блестящие круглые, расползающиеся.1-3 мкм, неподвижные палочки++F-Arthrobacter sp.293 мм, желтоватые, расползающиеся, край неровный0,5-4 мкм, подвижные палочки++F+Bacillus sp.302 мм, кремовые, сухие, круглые, край ровный. 0,6-3 мкм, подвижные палочки++F+Bacillus sp.315 мм, желтоватые, матовые, круглые, расползающиеся. Воздушный мицелий1-5 мкм, палочки-+O-Streptomyces sp.321 мм, белые, блестящие, круглые, край ровный1-3 мкм, подвижные палочки-+О+Pseudomonas sp.331 мм, кремовые, матовые, вросшие в агар, край ровный.1-3 мкм, подвижные палочки++F+Bacillus sp.345 мм, белые, блестящие круглые, расползающиеся.1-3 мкм, подвижные палочки++F+Bacillus sp.353 мм, желтоватые, расползающиеся, край неровный0,5-4 мкм, подвижные палочки-+О+Pseudomonas sp.361 мм, белые, блестящие, круглые, край ровный1-3 мкм, подвижные палочки++F+Bacillus sp.371 мм, кремовые, матовые, вросшие в агар, край ровный.1-3 мкм, подвижные палочки++F+Bacillus sp.385 мм, белые, блестящие круглые, расползающиеся.1-3 мкм, подвижные палочки++F+Bacillus sp.393 мм, желтоватые, расползающиеся, край неровный0,5-4 мкм, подвижные палочки-+О+Pseudomonas sp.401 мм, белые, блестящие, круглые, край ровный1-3 мкм, подвижные палочки++F-Arthrobacter sp.Таблица 2. Определение антагонистической активности у выделенных штаммов выделенных из почвы, против Alternaria brassicicola F-1864 методом «колодцев», мм№ изолятаМикроорганизмАктивность, мм1Bacillus sp.54±4,22Pseudomonas sp.44±2,73Bacillus sp.15±1,24Bacillus sp.23±2,45Bacillus sp.10±1,16Streptomyces sp.47±3,17Bacillus sp.39±2,88Pseudomonas sp.32±1,39Bacillus sp.15±1,310Pseudomonas sp.011Bacillus sp.23±1,212Bacillus sp.15±1,113Bacillus sp.47±3,114Bacillus sp.8±0,815Pseudomonas sp.45±2,216Bacillus sp.57±2,817Pseudomonas sp.15±1,218Bacillus sp.15±1,019Streptomyces sp.53±3,120Arthrobacter sp.10±0,821Bacillus sp.55±2,222Micrococcus sp.5±0,823Bacillus sp.12±1,324Micrococcus sp.025Bacillus sp.27±2,126Pseudomonas sp.027Bacillus sp.54±4,228Arthrobacter sp.0,5±0,329Bacillus sp.25±1,230Bacillus sp.27±2,431Streptomyces sp.56±1,132Pseudomonas sp.033Bacillus sp.49±2,834Bacillus sp.32±1,535Pseudomonas sp.036Bacillus sp.25±2,437Bacillus sp.23±1,138Bacillus sp.48±3,139Pseudomonas sp.040Arthrobacter sp.0

Список литературы
1. Буровинская М.В., Юрчинская Е.Г. Лабораторная оценка биологической эффективности фунгицидов в подавлении возбудителя альтернариоза винограда Alternaria tenuissima // Плодоводство и виноградарство Юга России - 2019, № 58(04), 146-165
2. Емцев В.Т., Мишустин Е.Н. Микробиология: учебник для вузов. — 5-е изд. перераб. и доп. — М.: Дрофа, 2005. — 445 (3) с.
3. Нурмухаметов Н.М., "Микроорганнизмы и растения"// Вестник Башкирского государственного аграрного университета №7, 2009г.
4. Попкова К.В. Практикум по сельскохозяйственной фитопатологии // Под ред. К. В. Попковой. — 2-е изд., перераб. и доп. — М.: Агропромиздат, 1988. — 335 с.: ил.
5. Сокирко В. П. Фитопатогенные грибы (морфология и систематика): учеб. пособие / В. П. Сокирко, В. С. Горьковенко, М. И. Зазимко. – Краснодар: КубГАУ, 2014. – 178 с.
6. Шильникова В.К., Теппер Е.З. Практикум по микробиологии. Москва, 1993.
7. Холт Дж. Определитель бактерий Берджи. 1997
8. Aleti G, Sessitsch A, Brader G. 2015. Genome mining: prediction of lipopeptides and polyketides from Bacillus and related Firmicutes. Comput Struct Biotechnol J 13:192–203. doi: 10.1016/j.csbj.2015.03.003.
9. Alexis P. Roodt, Nina Röder, Sebastian Pietz, Sara Kolbenschlag, Alessandro Manfrin, Klaus Schwenk, Mirco Bundschuh, Ralf Schulz. Emerging Midges Transport Pesticides from Aquatic to Terrestrial Ecosystems: Importance of Compound- and Organism-Specific Parameters. Environmental Science & Technology 2022, 56 (9), 5478-5488.
10. Antweiler, K., Schreiter, S., Keilwagen, J., Baldrian, P., Kropf, S., Smalla, K., et al. (2017). Statistical test for tolerability of effects of an antifungal biocontrol strain on fungal communities in three arable soils. Microb. Biotechnol. 10, 434–449. doi: 10.1111/1751-7915.12595
11. Azizbekyan R.R. Use of spore-forming bacteria as biological plant protection products. Biotechnology. 2013;1:69–77.
12. Bajpai VK, Kang SC. (2012). In Vitro and In Vivo inhibition of plant pathogenic fungi by essential oil and extracts of Magnolia liliflora. Desr J Agr Sci Tech, 14: 845-856.
13. Baltz RH. 2011. Strain improvement in actinomycetes in the postgenomic era. J Ind Microbiol Biotechnol. 38(6):657–667
14. Barka EA, Vatsa P, Sanchez L, Gaveau-Vaillant N, Jacquard C, Klenk H-P, Clément C, Ouhdouch Y, van Wezel GP.. 2016. Taxonomy, physiology, and natural products of Actinobacteria. Microbiol Mol Biol Rev. 80:1–43.
15. Barna J.C., Williams D.H. The structure and mode of action of glycopeptide antibiotics of the vancomycin group. Annu. Rev. Microbiol. 1984;38:339–357. doi: 10.1146/annurev.mi.38.100184.002011.
16. Beliën, T., Van Campenhout, S., Van Acker, M., Robben, J., Courtin, C. M., Delcour, J. A., et al. (2007). Mutational analysis of endoxylanases XylA and XylB from the phytopathogen Fusarium graminearum reveals comprehensive insights into their inhibitor insensitivity. Appl. Environ. Microbiol. 73, 4602–4608. doi: 10.1128/AEM.00442-07
17. Bérdy J. (2005). Bioactive microbial metabolites. Journal of Antibiotics, 58, 1–26.
18. Bereswill, R.; Golla, B.; Streloke, M.; Schulz, R. Entry and toxicity of organic pesticides and copper in vineyard streams: erosion rills jeopardise the efficiency of riparian buffer strips. Agric., Ecosyst. Environ. 2012, 146 (1), 81– 92, DOI: 10.1016/j.agee.2011.10.010
19. Berg, G., Zachow, C., Lottmann, J., Götz, M., Costa, R., and Smalla, K. (2005). Impact of plant species and site on rhizosphere-associated fungi antagonistic to Verticillium dahliae kleb. Appl. Environ. Microbiol. 71, 4203–4213. doi: 10.1128/AEM.71.8.4203-4213.2005
20. Bock, C. H., Thrall, P. H., Brubaker, C. L., & Burdon, J. J. (2002). Detection of genetic variation in Alternaria brassicicola using AFLP fingerprinting. Mycological Research, 106, 428–434.
21. Bock CH, Thrall PH, Burdon JJ. Genetic structure of populations of Alternaria brassicicola suggests the occurrence of sexual recombination. Mycol Res. 2005;109:227–36. doi: 10.1017/S0953756204001674.
22. Bock CH, Thrall PH, Burdon JJ, 2005. Genetic structure of populations of Alternaria brassicicola suggests the occurrence of sexual recombination. Mycological Research 109, 227– 36.
23. Boxall, A. B.; Hardy, A.; Beulke, S.; Boucard, T.; Burgin, L.; Falloon, P. D.; Haygarth, P. M.; Hutchinson, T.; Kovats, R. S.; Leonardi, G.; Levy, L. S.; Nichols, G.; Parsons, S. A.; Potts, L.; Stone, D.; Topp, E.; Turley, D. B.; Walsh, K.; Wellington, E. M.; Williams, R. J. Impacts of climate change on indirect human exposure to pathogens and chemicals from agriculture. Environ. Health Perspect. 2009, 117 (4), 508– 514, DOI: 10.1289/ehp.0800084
24. Brazauskienė, I., Petraitienė, E., Brazauskas, G., & Semaškienė, R. (2011). Medium-term trends in dark leaf and pod spot epidemics in Brassica napus and Brassica rapa in Lithuania. Journal of Plant Diseases and Protection, 197–207.
25. Brent, K. J.; Hollomon, D. W. Fungicide Resistance: The Assessment of Risk, FRAC Monograph No 2, 2nd ed.; Fungicide Resistance Action Committee, 2007.
26. Burkhardt, M.; Zuleeg, S.; Vonbank, R.; Bester, K.; Carmeliet, J.; Boller, M.; Wangler, T. Leaching of biocides from facades under natural weather conditions. Environ. Sci. Technol. 2012, 46 (10), 5497– 5503, DOI: 10.1021/es2040009
27. Campbell R, 1969. Further electron microscope studies of the conidium of Alternaria brassicicola. Archives of Microbiology 69, 60– 8.
28. Caulier S, Nannan C, Gillis A, Licciardi F, Bragard C, Mahillon J. 2019. Overview of the antimicrobial compounds produced by members of the Bacillus subtilis group. Front Microbiol 10:302. doi: 10.3389/fmicb.2019.00302.
29. Chang HT, Cheng YH, Wu CL, Chang ST, Chang TT, Su YC. (2008). Antifungal activity of essential oil and its constituents from Calocedrus macrolepis var. formosana, florin leaf against plant pathogenic fungi. Bioresource Technol, 99: 6266-6270.
30. Chater KF. 2016. Recent advances in understanding Streptomyces. F1000Research. 5:2795
31. Chatterjee, S., Kuang, Y., Splivallo, R., Chatterjee, P., and Karlovsky, P. (2016). Interactions among filamentous fungi Aspergillus niger, Fusarium verticillioides and Clonostachys rosea: fungal biomass, diversity of secreted metabolites and fumonisin production. BMC Microbiol. 16, 83–83. doi: 10.1186/s12866-016-0698-3
32. Chen M-H, Chang S-S, Dong B, Yu L-Y, Wu Y-X, Wang R-Z, Jiang W, Gao Z-P, Si S-Y.. 2018. Ahmpatinin i Bu, a new HIV-1 protease inhibitor, from Streptomyces sp. CPCC 202950. RSC Adv. 8:5138–5144
33. Cho Y, Cramer RA, Kim K-H et al., 2007. The Fus3/Kss1 MAP kinase homolog Amk1 regulates the expression of genes encoding hydrolytic enzymes in Alternaria brassicicola. Fungal Genetics and Biology 44, 543– 53.
34. Cho Y, 2015. How the necrotrophic fungus Alternaria brassicicola kills plant cells remains an enigma. Eukaryotic Cell 14, 335– 44.
35. Cobos, R., Calvo-Peña, C., Álvarez-Pérez, J. M., Ibáñez, A., Diez-Galán, A., González-García, S., et al. (2019). Necrotic and cytolytic activity on grapevine leaves produced by Nep1-like proteins of Diplodia seriata. Front. Plant Sci. 10:1282. doi: 10.3389/fpls.2019.01282
36. Costa, J. H., Wassano, C. I., Angolini, C. F. F., Scherlach, K., Hertweck, C., and Pacheco, F. T. (2019). Antifungal potential of secondary metabolites involved in the interaction between citrus pathogens. Sci. Rep. 9:18647. doi: 10.1038/s41598-019-55204-9
37. Daferera DJ, Ziogas BN, Polissiou MG. (2003). The effectiveness of plant essential oils on the growth of Botrytis cinerea, Fusarium sp. and Clavibacter michiganensis subsp. michiganensis. Crop Protection, 22: 39-44.
38. Daniel CK, Lennox CL, Vries FA. (2015). In-vitro effects of garlic extracts on pathogenic fungi Botrytis cinerea, Penicillium expansum and Neofabraea alba. S Afr J Sci, 111(7/8): 1-8.
39. Dang HX, Pryor B, Peever T, Lawrence CB, 2015. The Alternaria genomes database: a comprehensive resource for a fungal genus comprised of saprophytes, plant pathogens, and allergenic species. BMC Genomics 16, 239.
40. De Guillen, K., Ortiz-Vallejo, D., Gracy, J., Fournier, E., Kroj, T., and Padilla, A. (2015). Structure analysis uncovers a highly diverse but structurally conserved effector family in Phytopathogenic fungi. PLoS Pathog. 11:e1005228. doi: 10.1371/journal.ppat.1005228
41. Díaz-Dellavalle P, Cabrera A, Alem D, Larrañaga P, Ferreira F, Dalla M. (2011). Research: Antifungal activity of medicinal plant extracts against phytopathogenic fungus Alternaria spp. Chil J Agr Res, 71(2): 231-239.
42. Ding, F., Cheng, J., Fu, Y., Chen, T., Li, B., Jiang, D., et al. (2019). Early transcriptional response to DNA virus infection in Sclerotinia sclerotiorum. Viruses 11:278. doi: 10.3390/v11030278
43. Divon HH, Fluhr R. Nutrition acquisition strategies during fungal infection of plants. FEMS Microbiol Lett. 2007;266:65–74. doi: 10.1111/j.1574-6968.2006.00504.x.
44. Dixon GR, 1981. Alternaria spp. (dark leaf and pod spot). In: GR Dixon, ed. Vegetable Crop Diseases. London, UK: Palgrave Macmillan, 119– 23
45. Dong C., Wang L., Li Q., Shang Q. Epiphytic and endophytic fungal communities of tomato plants. Hortic. Plant J. 2021;7:38–48. doi: 10.1016/j.hpj.2020.09.002.
46. El-Baky N.A., Amara A.A.A.F. Recent approaches towards control of fungal diseases in plants: An updated review. J. Fungi. 2021;7:900. doi: 10.3390/jof7110900.
47. Eilenberg J., Hajek A., Lomer C. (2001). Suggestions for unifying the terminology in biological control. BioControl 46 387–400. 10.1023/A:1014193329979
48. Errakhi R, Meimoun P, Lehner A, Vidal G, Briand J, Corbineau F, Rona JP, Bouteau F. 2008. Anion channel activity is necessary to induce ethylene synthesis and programmed cell death in response to oxalic acid. J Exp Bot 59:3121–3129. doi: 10.1093/jxb/ern166.
49. El-Tarabily K.A., Sivasithamparam K. Non-streptomycete actinomycetes as biocontrol agents of soil-borne fungal plant pathogens and as plant growth promoters. Soil Biol. Biochem. 2006;38:1505–1520. doi: 10.1016/j.soilbio.2005.12.017.
50. Feichtenberger E. Citrus phytophthora diseases: Management challenges and successes. J. Citrus Pathol. 2015;2:27203. doi: 10.5070/C421027203.
51. Félix, C., Libório, S., Nunes, M., Félix, R., Duarte, A. S., Alves, A., et al. (2018). Lasiodiplodia theobromae as a producer of biotechnologically relevant enzymes. Int. J. Mol. Sci. 19:29. doi: 10.3390/ijms19020029
52. Félix, C., Meneses, R. S., Goncalves, M. F., Tilleman, L., Duarte, A. S., Jorrinnovo, J. V., et al. (2019). A multi-omics analysis of the grapevine pathogen Lasiodiplodia theobromae reveals that temperature affects the expression of virulence- and pathogenicity-related genes. Sci. Rep. 9, 1–12. doi: 10.1038/s41598-019-49551-w
53. Xiaoxia Feng, Dong Li, Wenqing Liang, Ting Ruan, Guibin Jiang. Recognition and Prioritization of Chemical Mixtures and Transformation Products in Chinese Estuarine Waters by Suspect Screening Analysis. Environmental Science & Technology 2021, 55 (14) , 9508-9517. https://doi.org/10.1021/acs.est.0c06773
54. Fira D, Dimkić I, Berić T, Lozo J, Stanković S. Biological control of plant pathogens by Bacillus species. J Biotechnol. 2018 Nov 10;285:44-55. doi: 10.1016/j.jbiotec.2018.07.044.
55. Fisher, M. C.; Henk, D. A.; Briggs, C. J.; Brownstein, J. S.; Madoff, L. C.; McCraw, S. L.; Gurr, S. J. Emerging fungal threats to animal, plant and ecosystem health. Nature 2012, 484 (7393), 186– 194, DOI: 10.1038/nature10947
56. Friesen TL, Faris JD, Solomon PS, Oliver RP. Host-specific toxins: effectors of necrotrophic pathogenicity. Cell Microbiol. 2008;10:1421–8. doi: 10.1111/j.1462-5822.2008.01153.x.
57. Fu, S. F., Wei, J. Y., Chen, H. W., Liu, Y. Y., Lu, H. Y., and Chou, J. Y. (2015). Indole-3-acetic acid: a widespread physiological code in interactions of fungi with other organisms. Plant Signal Behav. 10:e1048052. doi: 10.1080/15592324.2015.1048052
58. Fan C, Köller W. Diversity of cutinases from plant pathogenic fungi: differential and sequential expression of cutinolytic esterases by Alternaria brassicicola. FEMS Microbiol Lett. 1998;158:33–8. doi: 10.1111/j.1574-6968.1998.tb12796.x.
59. Fan B, Blom J, Klenk H-P, Borriss R. 2017. Bacillus amyloliquefaciens, Bacillus velezensis, and Bacillus siamensis form an “operational group B. amyloliquefaciens” within the B. subtilis species complex. Front Microbiol 8:22. doi: 10.3389/fmicb.2017.00022.
60. Garrigues, S., Gandía, M., Castillo, L., Coca, M., Marx, F., Marcos, J. F., et al. (2018). Three antifungal proteins from Penicillium expansum: different patterns of production and antifungal activity. Front. Microbiol. 9:2370. doi: 10.3389/fmicb.2018.02370
61. Georgios D. Gikas, Zisis Vryzas, Ioannis Karametos, Vassilios A. Tsihrintzis. Pyraclostrobin Removal in Pilot-Scale Horizontal Subsurface Flow Constructed Wetlands and in Porous Media Filters. Processes 2022, 10 (2), 414. https://doi.org/10.3390/pr10020414
62. Gomes, E. V., Costa, M. N., de Paula, R. G., de Azevedo, R. R., da Silva, F. L., Noronha, E. F., et al. (2015). The Cerato-Platanin protein Epl-1 from Trichoderma harzianum is involved in mycoparasitism, plant resistance induction and self-cell wall protection. Sci. Rep. 5:17998. doi: 10.1038/srep17998
63. Gomes, E. V., Ulhoa, C. J., Cardoza, R. E., Silva, R. N., Gutiérrez, S., Martins, E., et al. (2017). Involvement of Trichoderma harzianum Epl-1 protein in the regulation of botrytis virulence- and tomato defense-related genes. Front. Plant Sci. 8:880. doi: 10.3389/fpls.2017.00880
64. Goodfellow M, Busarakam K, Idris H, Labeda DP, Nouioui I, Brown R, Kim B-Y, del Carmen Montero-Calasanz M, Andrews BA, Bull AT.. 2017. Streptomyces asenjonii sp. nov., isolated from hyper-arid Atacama Desert soils and emended description of Streptomyces viridosporus Pridham et al. 1958. Antonie Van Leeuwenhoek. 110:1133–1148.
65. Michael S. Gross, Thomas G. Bean, Michelle L. Hladik, Barnett A. Rattner, Kathryn M. Kuivila. Uptake, Metabolism, and Elimination of Fungicides from Coated Wheat Seeds in Japanese Quail (Coturnix japonica). Journal of Agricultural and Food Chemistry 2020, 68 (6), 1514-1524. https://doi.org/10.1021/acs.jafc.9b05668
66. Grubbs KJ, Bleich RM, Santa Maria KC, Allen SE, Farag S, Shank EA, Bowers AA. 2017. Large-scale bioinformatics analysis of Bacillus genomes uncovers conserved roles of natural products in bacterial physiology. mSystems 2:e00040-17. doi: 10.1128/mSystems.00040-17.
67. Guillemette T, Iacomi-Vasilescu B, Simoneau P. Conventional and real-time PCR-based assay for detecting pathogenic Alternaria brassicae in cruciferous seed. Plant Dis. 2004;88:490–6. doi: 10.1094/PDIS.2004.88.5.490.
68. Guerriero, G., Hausman, J. F., Strauss, J., Ertan, H., and Siddiqui, K. S. (2015). Destructuring plant biomass: focus on fungal and extremophilic cell wall hydrolases. Plant Sci. 234, 180–193. doi: 10.1016/j.plantsci.2015.02.010
69. Guest D, Brown J, 1997. Infection processes. In: JF Brown, HJ Ogle, eds. Plant Pathogens and Plant Diseases. The Australasian Plant Pathology Society Inc.
70. Guo X, Liu N, Li X, Ding Y, Shang F, Gao Y, Ruan J, Huang Y.. 2015. Red soils harbor diverse culturable actinomycetes that are promising sources of novel secondary metabolites. Löffler FE, editor. Appl Environ Microbiol. 81(9):3086–3103.
71. Guzmán-Guzmán, P., Alemán-Duarte, M. I., Delaye, L., Herrera-Estrella, A., and Olmedo-Monfil, V. (2017). Identification of effector-like proteins in Trichoderma spp. and role of a hydrophobin in the plant-fungus interaction and mycoparasitism. BMC Genet. 18:16. doi: 10.1186/s12863-017-0481-y
72. Haas D, Défago G. Biological control of soil-borne pathogens by fluorescent pseudomonads. Nat Rev Microbiol. 2005 Apr; 3(4):307-19. doi: 10.1038/nrmicro1129.
73. Haith, D. A.; Duffany, M. W. Pesticide runoff loads from lawns and golf courses. J. Environ. Eng. 2007, 133 (4), 435– 446, DOI: 10.1061/(ASCE)0733-9372(2007)133:4(435)
74. Harwood CR, Mouillon JM, Pohl S, Arnau J. 2018. Secondary metabolite production and the safety of industrially important members of the Bacillus subtilis group. FEMS Microbiol Rev 42:721–738. doi: 10.1093/femsre/fuy028.
75. Hassan HM, Degen D, Jang KH, Ebright RH, Fenical W.. 2015. Salinamide F, new depsipeptide antibiotic and inhibitor of bacterial RNA polymerase from a marine-derived Streptomyces sp. J Antibiot (Tokyo). 68:206–209.
76. Heimpel G. E., Mills N. (2017). Biological Control - Ecology and Applications. Cambridge: Cambridge University Press.
77. Carolin Holtkamp, Trix van Mierlo. Paving a Way towards Food Democratisation: Mechanisms in Contentious Niche Development. Sustainability 2022, 14 (3), 1553.
78. Humpherson-Jones FM. The incidence of Alternaria spp. and Leptosphaeria maculans in commercial brassica seed in the United Kingdom. Plant Pathol. 1985; 34:385–90. doi: 10.1111/j.1365-3059.1985.tb01377.x.
79. Hansen, L. N., & Earle, E. D. (1997). Somatic hybrids between Brassica oleracea L. and Sinapis alba L. with resistance to Alternaria brassicae (Berk.) Sacc. Theoretical and Applied Genetics, 94(8), 1078–1085.
80. Hakala, K.; Hannukkala, A. O.; Huusela-Veistola, E.; Jalli, M.; Peltonen-Sainio, P. Pests and diseases in a changing climate: a major challenge for Finnish crop production. Agric. Food Sci. 2011, 20, 3– 14, DOI: 10.2137/145960611795163042
81. Howell C.C., Semple K.T., Bending G.D. Isolation and characterisation of azoxystrobin degrading bacteria from soil. Chemosphere. 2014;95:370–378. doi: 10.1016/j.chemosphere.2013.09.048.
82. Huffaker, A., Kaplan, F., Vaughan, M. M., Dafoe, N. J., Ni, X., Rocca, J. R., et al. (2011). Novel acidic sesquiterpenoids constitute a dominant class of pathogen-induced phytoalexins in maize. Plant Physiol. 156, 2082–2097. doi: 10.1104/pp.111.179457
83. Humpherson-Jones, F., & Phelps, K. (1989). Climatic factors influencing spore production in Alternaria brassicae and Alternaria brassicicola. Annals of Applied Biology, 114, 449–458.
84. Iacomi-Vasilescu B, Bataillé-Simoneau N, Campion C, Dongo A, Laurent E, Serandat I, et al. Effect of null mutations in the AbNIK1 gene on saprophytic and parasitic fitness of Alternaria brassicicola isolates highly resistant to dicarboximides fungicides. Plant Pathol. 2008;57:937–47. doi: 10.1111/j.1365-3059.2008.01864.x.
85. Iftikhar Y., Sajid A., Shakeel Q., Ahmad Z., Ul Haq Z. Biological antagonism: A safe and sustainable way to manage plant diseases. In: Ul Haq Z., Ijaz S., editors. Plant Disease Management Strategies for Sustainable Agriculture through Traditional and Modern Approaches. Springer; Cham, Switzerland: 2020. pp. 83–109.
86. Igarashi Y, Iida T, Oku N, Watanabe H, Furihata K, Miyanouchi K.. 2012. Nomimicin, a new spirotetronate-class polyketide from an actinomycete of the genus Actinomadura. J Antibiot (Tokyo). 65: 355–359.
87. Isnansetyo A., Cui L., Hiramatsu K., Kamei Y. Antibacterial activity of 2, 4-diacetylphloroglucinol produced by Pseudomonas sp. AMSN isolated from a marine alga, against vancomycin-resistant Staphylococcus aureus. Int. J. Antimicrob. Agents. 2003;22:545–547. doi: 10.1016/S0924-8579(03)00155-9.
88. Jajić, I., Dudaš, T., Krstović, S., Krska, R., Sulyok, M., Bagi, F., et al. (2019). Emerging fusarium mycotoxins fusaproliferin, beauvericin, enniatins, and moniliformin in serbian maize. Toxins 11:357. doi: 10.3390/toxins11060357
89. Janusz, G., Pawlik, A., Sulej, J., Swiderska-Burek, U., Jarosz-Wilkolazka, A., and Paszczynski, A. (2017). Lignin degradation: microorganisms, enzymes involved, genomes analysis and evolution. FEMS Microbiol. Rev. 41, 941–962. doi: 10.1093/femsre/fux049
90. Jaroszuk-Scise, J., Tyśkiewicz, R., Nowak, A., Nowak, A., Ozimek, E., Majewska, M., et al. (2019). Phytohormones (auxin, gibberellin) and ACC deaminase in vitro synthesized by the Mycoparasitic Trichoderma DEMTkZ3A0 strain and changes in the level of auxin and plant resistance markers in wheat seedlings inoculated with this strain conidia. Int. J. Mol. Sci. 20:4923. doi: 10.3390/ijms20194923
91. Jiang, L., Jeong, J. C., Lee, J. S., Park, J. M., Yang, J. W., Lee, M. H., et al. (2019). Potential of Pantoea dispersa as an effective biocontrol agent for black rot in sweet potato. Sci. Rep. 9:16354. doi: 10.1038/s41598-019-52804-3
92. Jiang Z, Guo L, Chen C, Liu S, Zhang L, Dai S, He Q, You X, Hu X, Tuo L, et al. 2015. Xiakemycin A, a novel pyranonaphthoquinone antibiotic, produced by the Streptomyces sp. CC8-201 from the soil of a karst cave. J Antibiot (Tokyo). 68:771–774.
93. Kaneda M, Kajimura Y. [New antifungal antibiotics, bacillopeptins and fusaricidins]. Yakugaku Zasshi. 2002 Sep;122(9):651-71. Japanese. doi: 10.1248/yakushi.122.651. PMID: 12235857.
94. Kasprzyk, I., Sulborska, A., Nowak, M., Szymańska, A., Kaczmarek, J., Haratym, W., Weryszko-Chmielewska, E., & Jędryczka, M. (2013). Fluctuation range of the concentration of airborne Alternaria conidiospores sampled at different geographical locations in Poland (2010–2011). Acta Agrobotanica, 66, 65–76.
95. Vishab Kesarwani, Vineet Kumar Rai. Upconverting Nanoparticles in the Detection of Fungicides and Plant Viruses. 2022,,, 493-516. https://doi.org/10.1002/9783527834884.ch17
96. Khan R.A.A., Najeeb S., Mao Z., Ling J., Yang Y., Li Y., Xie B. Bioactive secondary metabolites from Trichoderma spp. against phytopathogenic bacteria and koot-Knot nematode. Microorganisms. 2020;8:401. doi: 10.3390/microorganisms8030401.
97. Kobayashi, Y., Maeda, T., Yamaguchi, K., and Kameoka, H. (2018). The genome of Rhizophagus clarus HR1 reveals a common genetic basis for auxotrophy among arbuscular mycorrhizal fungi. BMC Genomics 19:465. doi: 10.1186/s12864-018-4853-0
98. Köhl, J., Van Tongeren, C., Groenenboom-de Haas, B., Van Hoof, R., Driessen, R., & Van Der Heijden, L. (2010). Epidemiology of dark leaf spot caused by Alternaria brassicicola and A. brassicae in organic seed production of cauliflower. Plant Pathology, 59, 358–367.
99. Köhler, H. R.; Triebskorn, R. Wildlife ecotoxicology of pesticides: can we track effects to the population level and beyond?. Science 2013, 341 (6147), 759– 765, DOI: 10.1126/science.1237591
100. Korres AMN, Buss DS, Ventura JA, Fernandes PMB. (2011). Candida krusei and Kloeckera apis inhibit the causal agent of pineapple fusariosis, Fusarium guttiforme. Fungal Biology, 115: 1251-1258.
101. Krause, K., Henke, C., and Asiimwe, T. (2015). Biosynthesis and secretion of Indole-3-acetic acid and its morphological effects on Tricholoma vaccinum-spruce ectomycorrhiza. Appl. Environ. Microbiol. 81, 7003–7011. doi: 10.1128/AEM.01991-15
102. Kretschmer, M., Klose, J., Kronstad, J. W., Ulbricht, A., Klemmer, S., Schachtschabel, D., et al. (2012). Defects in mitochondrial and peroxisomal β-oxidation influence virulence in the maize pathogen Ustilago maydis. Eukaryot. Cell 11, 1055–1066. doi: 10.1128/EC.00129-12
103. Kunoh H. Endophytic actinomycetes: Attractive biocontrol agents. J. Gen. Plant Pathol. 2002;68:249–252. doi: 10.1007/PL00013084.
104. Kumar, D., Maurya, N., Bharati, Y. K., Kumar, A., Kumar, K., Srivastava, K., Chand, G., Kushwaha, C., Singh, S. K., & Mishra, R. K. (2014). Alternaria blight of oilseed brassicas: A comprehensive review. African Journal of Microbiology Research, 8, 2816–2829.
105. Kubota, M., Abiko, K., Yanagisawa, Y., & Nishi, K. (2006). Frequency of Alternaria brassicicola in commercial cabbage seeds in Japan. Journal of General Plant Pathology, 72, 197–204.
106. Kumar, D., Maurya, N., Bharati, Y. K., Kumar, A., Kumar, K., Srivastava, K., Chand, G., Kushwaha, C., Singh, S. K., & Mishra, R. K. (2014). Alternaria blight of oilseed brassicas: A comprehensive review. African Journal of Microbiology Research, 8, 2816–2829.
107. Lanver, D., Mendoza-Mendoza, A., Brachmann, A., and Kahmann, R. (2010). Sho1 and Msb2-related proteins regulate appressorium development in the smut fungus Ustilago maydis. Plant Cell 22, 2085–2101. doi: 10.1105/tpc.109.073734
108. Lara-Márquez, A., Zavala-Páramo, M. G., López-Romero, E., Calderón-Cortés, N., López-Gómez, R., Conejo-Saucedo, U., et al. (2011). Cloning and characterization of a pectin lyase gene from Colletotrichum lindemuthianum and comparative phylogenetic/structural analyses with genes from phytopathogenic and saprophytic/opportunistic microorganisms. BMC Microbiol. 11:260. doi: 10.1186/1471-2180-11-260
109. Latha S, Sivaranjani G, Dhanasekaran D. 2017. Response surface methodology: A non-conventional statistical tool to maximize the throughput of Streptomyces species biomass and their bioactive metabolites. Crit Rev Microbiol. 43(5):567–582.
110. Lawrence CB, Mitchell TK, Craven KD, Cho Y, Cramer RA Jr, Kim K-H, 2008. At death's door: Alternaria pathogenicity mechanisms. Plant Pathology Journal 24, 101– 11.
111. Łaźniewska J, Macioszek VK, Lawrence CB, Kononowicz AK, 2010. Fight to the death: Arabidopsis thaliana defense response to fungal necrotrophic pathogens. Acta Physiologiae Plantarum 32, 1– 10.
112. Lee L-H, Cheah Y-K, Mohd Sidik S, Ab Mutalib N-S, Tang Y-L, Lin H-P, Hong K.. 2012. Molecular characterization of Antarctic actinobacteria and screening for antimicrobial metabolite production. World J Microbiol Biotechnol. 28:2125–2137.
113. Leitão S., Cerejeira M.J., Van den Brink P.J., Sousa J.P. Effects of azoxystrobin, chlorothalonil, and ethoprophos on the reproduction of three terrestrial invertebrates using a natural Mediterranean soil. Appl. Soil Ecol. 2014;76:124–131. doi: 10.1016/j.apsoil.2013.12.013.
114. Lefrancq, M.; Imfeld, G.; Payraudeau, S.; Millet, M. Kresoxim methyl deposition, drift and runoff in a vineyard catchment. Sci. Total Environ. 2013, 442, 503– 508, DOI: 10.1016/j.scitotenv.2012.09.082
115. Leplat J., Friberg H., Abid M., Steinberg C. Survival of Fusarium graminearum, the causal agent of Fusarium head blight. A review. Agron. Sustain. Dev. 2013;33:97–111.
116. Leroch M., Kretschmer M., Hahn M. Fungicide resistance phenotypes of Botrytis cinerea isolates from commercial vineyards in South West Germany. J. Phytopathol. 2011;159:63–65. doi: 10.1111/j.1439-0434.2010.01719.x.
117. Li, J., Gu, F., Wu, R., Yang, J., and Zhang, K. (2017). Phylogenomic evolutionary surveys of subtilase superfamily genes in fungi. Sci. Rep. 7:45456. doi: 10.1038/srep45456
118. Lievens, L., Pollier, J., Goossens, A., Beyaert, R., and Staal, J. (2017). Abscisic acid as pathogen effector and immune regulator. Front. Plant Sci. 8:587. doi: 10.3389/fpls.2017.00587
119. Linde CC, Liles JA, Thrall PH, 2010. Expansion of genetic diversity in randomly mating founder populations of Alternaria brassicicola infecting Cakile maritima in Australia. Applied and Environmental Microbiology 76, 1946– 54.
120. Liu, L., Gueguen-Chaignon, V., Gonçalves, I. R., Rascle, C., Rigault, M., Dellagi, A., et al. (2019). A secreted metal-binding protein protects necrotrophic phytopathogens from reactive oxygen species. Nat. Commun. 10:4853. doi: 10.1038/s41467-019-12826-x
121. Loc, N. H., Huy, N. D., Quang, H. T., Lan, T. T., and Thu, H. T. T. (2019). Characterisation and antifungal activity of extracellular chitinase from a biocontrol fungus, Trichoderma asperellum PQ34. Mycology 11, 38–48. doi: 10.1080/21501203.2019.1703839
122. Loo J.A. Ecological impacts of non-native invertebrates and fungi on terrestrial ecosystems. Biol. Invasions. 2009;11:81–96. doi: 10.1007/s10530-008-9321-3.
123. Lou, J., Fu, L., Peng, Y., and Zhou, L. (2013). Metabolites from Alternaria fungi and their bioactivities. Molecules 18, 5891–5935. doi: 10.3390/molecules18055891
124. N S Lyakhovchenko, I A Nikishin, E D Gubina, D A Pribylov, V Y Senchenkov, A A Sirotin and I P Solyanikova Assessment of the antifungal activity of the violacein-forming strain Janthinobacterium sp. B-3515 against the mould fungus Alternaria brassicicola F-1864 // IOP Conf. Series: Earth and Environmental Science 908 (2021) 012006 doi:10.1088/1755-1315/908/1/012006
125. Lyu, X., Shen, C., Fu, Y., Xie, J., Jiang, D., Li, G., et al. (2015). Comparative genomic and transcriptional analyses of the carbohydrate-active enzymes and secretomes of phytopathogenic fungi reveal their significant roles during infection and development. Sci. Rep. 5:15565. doi: 10.1038/srep15565
126. Ma, H., Zhang, B., Gai, Y., Sun, X., Chung, K. R., and Li, H. (2019). Cell-wall-degrading enzymes required for virulence in the host selective toxin-producing necrotroph alternaria alternata of citrus. Front. Microbiol. 10:2514. doi: 10.3389/fmicb.2019.02514
127. Cláudia Machado, Ana P. Cuco, Fernanda Cássio, Justyna Wolinska, Bruno B. Castro. Antiparasitic potential of agrochemical fungicides on a non-target aquatic model (Daphnia × Metschnikowia host-parasite system). Science of The Total Environment 2022, 833, 155296. https://doi.org/10.1016/j.scitotenv.2022.155296
128. R. Macirella, V. Curcio, A. I. M. Ahmed, D. Pellegrino, E. Brunelli. Effect of short-term exposure to low concentration of tebuconazole: morphological, histometric and functional modifications in Danio rerio liver. The European Zoological Journal 2022, 89 (1), 331-345. https://doi.org/10.1080/24750263.2022.2043469
129. Martínez JA. Natural fungicides obtained from plants. (2012). Chapter 1. In: Dhanasekaran D, Thajuddin N, Panneerselvam A (Eds). Fungicides for plant and animal diseases. Europe: InTech, 3-28.
130. Martínez IM, Chrispeels MJ. Genomic analysis of the unfolded protein response in Arabidopsis shows its connection to important cellular processes. Plant Cell. 2003;15:561–76. doi: 10.1105/tpc.007609.
131. Marin-Menguiano, M., Morenosanchez, I., Barrales, R. R., Fernandezalvarez, A., and Ibeas, J. I. (2019). N-glycosylation of the protein disulfide isomerase Pdi1 ensures full Ustilago maydis virulence. PLoS Pathog. 15:e1007687. doi: 10.1371/journal.ppat.1007687
132. Maltby, L.; Brock, T. C. M.; van den Brink, P. J. Fungicide risk assessment for aquatic ecosystems: importance of interspecific variation, toxic mode of action, and exposure regime. Environ. Sci. Technol. 2009, 43 (19), 7556– 7563, DOI: 10.1021/es901461c
133. McRoberts N, Lennard JH, 1996. Pathogen behavior and plant cell reaction in interactions between Alternaria species and leaves of host and nonhost plants. Plant Pathology 45, 742– 52.
134. Meena, P., Meena, R., Chattopadhyay, C., & Kumar, A. (2004). Identification of critical stage for disease development and biocontrol of Alternaria blight of Indian mustard (Brassica juncea). Journal of Phytopathology, 152, 204–209.
135. Medema MH, Blin K, Cimermancic P, de Jager V, Zakrzewski P, Fischbach MA, Weber T, Takano E, Breitling R.. 2011. antiS-MASH: rapid identification, annotation and analysis of secondary metabolite biosynthesis gene clusters in bacterial and fungal genome sequences. Nucleic Acids Res. 39:W339–W346.
136. Medema MH, Fischbach MA.. 2015. Computational approaches to natural product discovery. Nat Chem Biol. 11:639–648.
137. Michereff, S. J., Noronha, M. A., Xavier Filha, M. S., Câmara, M. P., & Reis, A. (2012). Survey and prevalence of species causing Alternaria leaf spots on Brassica species in Pernambuco. Horticultura Brasileira, 30, 345–348.
138. Eliana Monteiro, Berta Gonçalves, Isabel Cortez, Isaura Castro. The Role of Biostimulants as Alleviators of Biotic and Abiotic Stresses in Grapevine: A Review. Plants 2022, 11 (3), 396. https://doi.org/10.3390/plants11030396
139. Moore D., Robson G.D., Trinci A.P.J. 21st Century Guidebook to Fungi. 2nd ed. Cambridge University Press; Cambridge, UK: 2020. pp. 1–610.
140. Mostafalou S., Abdollahi M. Pesticides and human chronic diseases: Evidences, mechanisms, and perspectives. Toxicol. Appl. Pharmacol. 2013;268:157–177. doi: 10.1016/j.taap.2013.01.025.
141. Mota S.F., Padua P.F., Ferreira A.N., Gomes L.D.W., Dias M.A., Souza E.A., Pereira O.L., Cardoso P.G. Biological control of common bean diseases using endophytic Induratia spp. Biol. Control. 2021;159:104629. doi: 10.1016/j.biocontrol.2021.104629.
142. Muller T., Ruppel S. Progress in cultivation-independent phyllosphere microbiology. FEMS Microbiol. Ecol. 2014;87:2–17. doi: 10.1111/1574-6941.12198.
143. Müller T., Behrendt U., Ruppel S., von der Waydbrink G., Müller M.E. Fluorescent pseudomonads in the phyllosphere of wheat: Potential antagonists against fungal phytopathogens. Curr. Microbiol. 2016;72:383–389. doi: 10.1007/s00284-015-0966-8.
144. Myers J.M., Ramsey J.P., Blackman A.L., Nichols A.E., Minbiole K.P., Harris R.N. Synergistic inhibition of the lethal fungal pathogen Batrachochytrium dendrobatidis: The combined effect of symbiotic bacterial metabolites and antimicrobial peptides of the frog Rana muscosa. J. Chem. Ecol. 2012;38:958–965. doi: 10.1007/s10886-012-0170-2.
145. Nettles, R.; Watkins, J.; Ricks, K.; Boyer, M.; Licht, M.; Atwood, L. W.; Peoples, M.; Smith, R. G.; Mortensen, D. A.; Koide, R. T. Influence of pesticide seed treatments on rhizosphere fungal and bacterial communities and leaf fungal endophyte communities in maize and soybean. Appl. Soil Ecol. 2016, 102, 61– 69, DOI: 10.1016/j.apsoil.2016.02.008
146. Nowicki, M., Nowakowska, M., Niezgoda, A., & Kozik, E. (2012). Alternaria black spot of crucifers: Symptoms, importance of disease, and perspectives of resistance breeding. Vegetable Crops Research Bulletin, 76, 5–19.
147. Poomraphie Nuntawong, Waraporn Putalun, Hiroyuki Tanaka, Satoshi Morimoto, Seiichi Sakamoto. Lateral flow immunoassay for small-molecules detection in phytoproducts: a review. Journal of Natural Medicines 2022, 76 (3) , 521-545. https://doi.org/10.1007/s11418-022-01605-6
148. Oerke, E.-C. Crop losses to pests. J. Agric. Sci. 2006, 144 (1), 31– 43, DOI: 10.1017/S0021859605005708
149. Oh D, Poulsen M, Currie CR, Clardy J.. 2011. Sceliphrolactam, a polyene macrocyclic lactam from a wasp-associated. Org Lett. 13:15–18
150. Oka K, Akamatsu H, Kodama M, Nakajima H, Kawada T, Otani H, 2005. Host-specific AB-toxin production by germinating conidia of Alternaria brassicicola is induced by a host-derived oligosaccharide. Physiological and Molecular Plant Pathology 66, 12– 9.
151. Ökmen, B., Mathow, D., Hof, A., Lahrmann, U., Aßmann, D., and Doehlemann, G. (2018). Mining the effector repertoire of the biotrophic fungal pathogen Ustilago hordei during host and non-host infection. Mol. Plant Pathol. 19, 2603–2622. doi: 10.1111/mpp.12732
152. Onaka H. 2017. Novel antibiotic screening methods to awaken silent or cryptic secondary metabolic pathways in actinomycetes. J Antibiot (Tokyo). 70(8):865–870.
153. Ongena M, Jacques P. 2008. Bacillus lipopeptides: versatile weapons for plant disease biocontrol. Trends Microbiol 16:115–125. doi: 10.1016/j.tim.2007.12.009.
154. Otani H, Kohnobe A, Kodama M, Kohmoto K, 1998. Production of a host-specific toxin by germinating conidia of Alternaria brassicicola. Physiological and Molecular Plant Pathology 52, 285– 95.
155. Panstruga, R., and Kuhn, H. (2019). Mutual interplay between phytopathogenic powdery mildew fungi and other microorganisms. Mol. Plant Pathol. 20, 463–470. doi: 10.1111/mpp.12771
156. Pearson B.L., Simon J.M., McCoy E.S., Salazar G., Fragola G., Zylka M.J. Identification of chemicals that mimic transcriptional changes associated with autism, brain aging and neurodegeneration. Nat. Commun. 2016;7:11173. doi: 10.1038/ncomms11173
157. Peix A, Ramírez-Bahena MH, Velázquez E. The current status on the taxonomy of Pseudomonas revisited: an update. Infect genet envol. 2018;57:106–116. doi: 10.1016/j.meegid.2017.10.026.
158. Pereira, J. L., Queiroz, R. M., Charneau, S. O., Felix, C. R., Ricart, C. A. O., Silva, F. L., et al. (2014). Analysis of Phaseolus vulgaris response to its association with Trichoderma harzianum (ALL-42) in the presence or absence of the phytopathogenic fungi Rhizoctonia solani and Fusarium solani. PLoS ONE 9:e98234. doi: 10.1371/journal.pone.0098234
159. Penha RO, Vandenberghe LPS, Faulds C, Soccol VT, Soccol CR. Bacillus lipopeptides as powerful pest control agents for a more sustainable and healthy agriculture: recent studies and innovations. Planta. 2020 Feb 21;251(3):70. doi: 10.1007/s00425-020-03357-7.
160. Pengfei Xue, Xiaowei Liu, Liuqing Zhao, Jingran Zhang, Zeying He. Integrating high-throughput sequencing and metabolomics to investigate the stereoselective responses of soil microorganisms to chiral fungicide cis-epoxiconazole. Chemosphere 2022, 300 , 134198. https://doi.org/10.1016/j.chemosphere.2022.134198
161. Pochon S, Terrasson E, Guillemette T, Iacomi-Vasilescu B, Georgeault S, Juchaux M, Berruyer R, Debeaujon I, Simoneau P, Campion C. The Arabidopsis thaliana-Alternaria brassicicola pathosystem: A model interaction for investigating seed transmission of necrotrophic fungi. Plant Methods. 2012;8:16. doi: 10.1186/1746-4811-8-16.
162. Proctor, R. H., McCormick, S. P., Kim, H. S., Cardoza, R. E., Stanley, A. M., Lindo, L., et al. (2018). Evolution of structural diversity of trichothecenes, a family of toxins produced by plant pathogenic and entomopathogenic fungi. PLoS Pathog. 14:e1006946. doi: 10.1371/journal.ppat.1006946
163. Pusztahelyi, T., Holb, I. J., and Pócsi, I. (2015). Secondary metabolites in fungus-plant interactions. Front. Plant Sci. 6:573. doi: 10.3389/fpls.2015.00573
164. Qin, J., Wang, K., Sun, L., Xing, H., Wang, S., Li, L., et al. (2018). The plant-specific transcription factors CBP60g and SARD1 are targeted by a Verticillium secretory protein VdSCP41 to modulate immunity. elife 7:e34902. doi: 10.7554/eLife.34902.030
165. Quintanilha-Peixoto, G., Torres, R. O., Reis, I. M. A., de Oliveira, T. A. S., Bortolini, D. E., Duarte, E. A. A., et al. (2019). Calm before the storm: a glimpse into the secondary metabolism of Aspergillus welwitschiae, the etiologic agent of the sisal bole rot. Toxins 11:631. doi: 10.3390/toxins11110631м
166. Rahman M., Islam T., Jett L., Kotcon J. Biocontrol agent, biofumigation, and grafting with resistant rootstock suppress soil-borne disease and improve yield of tomato in West Virginia. Crop Prot. 2021;145:105630. doi: 10.1016/j.cropro.2021.105630
167. Rajnisz A, Guśpiel A, Postek M, Ziemska J, Laskowska A, Rabczenko D, Solecka J.. 2016. Characterization and optimization of biosynthesis of bioactive secondary metabolites produced by Streptomyces sp. 8812. Pol J Microbiol. 65:51–61.
168. Rebek E.J., Frank S.D., Royer T.A., Bográn C.E. Alternatives to chemical control of insect pests. In: Solonesky S., Larramendy M.L., editors. Insecticides—Basic and Other Applications. InTech; London, UK: 2012. pp. 171–196.
169. Reilly, T. J.; Smalling, K. L.; Orlando, J. L.; Kuivila, K. M. Occurrence of boscalid and other selected fungicides in surface water and groundwater in three targeted use areas in the United States. Chemosphere 2012, 89 (3), 228– 234, DOI: 10.1016/j.chemosphere.2012.04.023
170. Wafa Rhimi, Jairo Mendoza-Roldan, Chioma Inyang Aneke, Adriana Mosca, Domenico Otranto, Ana Alastruey-Izquierdo, Claudia Cafarchia. Role of lizards as reservoirs of pathogenic yeasts of zoonotic concern. Acta Tropica 2022, 231 , 106472. https://doi.org/10.1016/j.actatropica.2022.106472
171. Rodrigo S., Santamaría O., Halecker S., Lledó S., Stadler M. Antagonism between Byssochlamys spectabilis (anamorph Paecilomyces variotii) and plant pathogens: Involvement of the bioactive compounds produced by the endophyte. Ann. Appl. Biol. 2017;171:464–476. doi: 10.1111/aab.12388.
172. Rodrigues E.T., Lopes I., Pardal M.A. Occurrence, fate and effects of azoxystrobin in aquatic ecosystems: A review. Environ. Int. 2013;53:18–28. doi: 10.1016/j.envint.2012.12.005.
173. Romeralo C., Santamaría O., Pando V., Diez J.J. Fungal endophytes reduce necrosis length produced by Gremmeniella abietina in Pinus halepensis seedlings. Biol. Control. 2015;80:30–39. doi: 10.1016/j.biocontrol.2014.09.010.
174. Rotem J, 1994. The Genus Alternaria: Biology, Epidemiology, and Pathogenicity. St Paul, MN, USA: APS Press.
175. Rothrock C.S., Gottlieb D. Role of antibiosis in antagonism of Streptomyces hygroscopicus var. geldanus to Rhizoctonia solani in soil. Can. J. Microbiol. 1984;30:1440–1447. doi: 10.1139/m84-230.
176. Santos, R. J., Zivanovic, M., Costa de Novaes, M. I., and Chen, Z. Y. (2020). The AVR4 effector is involved in cercosporin biosynthesis and likely affects the virulence of Cercospora cf. flagellaris on soybean. Mol. Plant Pathol. 21, 53–65. doi: 10.1111/mpp.12879
177. P. Santhoshkumar, Balamurugan Thirumalraj, Balasubramanian Sriram, K. Karuppasamy, Dhanasekaran Vikraman, A. Kathalingam, Heeman Choe, Hyun-Seok Kim. Mesoporous SnSe2-grafted N-doped carbon composites with integrated flaky structure for electrochemical sensing of carbendazim. Ceramics International 2022, 48 (11) , 16023-16032.
178. Satish S, Mohana DC, Ranhavendra MP, Raveesha KA. (2007). Antifungal activity of some plant extracts against important seed borne pathogens of Aspergillus sp. J Agr Sci Tech, 3(1): 109-119.
179. Shang, Y., Xiao, G., Zheng, P., Cen, K., Zhan, S., and Wang, C. (2016). Divergent and convergent evolution of fungal pathogenicity. Genome Biol. Evol. 8, 1374–1387. doi: 10.1093/gbe/evw082
180. Scholze, P., and Ding, Y. (2005). Manifestation of black spot disease (Alternaria brassicicola) in intact leaves and detached leaf segments of cabbage plants grown in nutrient solutions without N, P, K and Ca/Manifestierung der Schwarzfleckigkeit (Alternaria brassicicola) auf intakten Blättern und isolierten Blattsegmenten von Kohlpflanzen, die mit Nährlösungen ohne N, P, K und Ca ernährt wurden. Zeitschrift für Pflanzenkrankheiten und Pflanzenschutz/Journal of Plant Diseases and Protection:562–572.
181. Schiøtt, M., Rogowska-Wrzesinska, A., Roepstorff, P., and Boomsma, J. J. (2010). Leaf-cutting ant fungi produce cell wall degrading pectinase complexes reminiscent of phytopathogenic fungi. BMC Biol. 8:156. doi: 10.1186/1741-7007-8-156
182. Seagraves, M. P.; Lundgren, J. G. Effects of neonicitinoid seed treatments on soybean aphid and its natural enemies. J. Pest Sci. 2012, 85 (1), 125– 132, DOI: 10.1007/s10340-011-0374-
183. Silva-Moreno E, Brito-Echeverría J, López M, Ríos J, Balic I, Campos-Vargas R, Polaco R. (2016). Effect of cuticular waxes compounds from table grapes on growth, germination and gene expression in Botrytis cinerea. World J Microbiol Biotechnol,32: 68-74.
184. Singh B, Gupta V, Passari A.. 2018. New and future developments in microbial biotechnology and bioengineering. Actinobacteria: diversity and biotechnological applications. Amsterdam, Oxford, Cambridge: Elsevier.
185. Smalling, K. L.; Kuivila, K. M.; Orlando, J. L.; Phillips, B. M.; Anderson, B. S.; Siegler, K.; Hunt, J. W.; Hamilton, M. Environmental fate of fungicides and other current-use pesticides in a central California estuary. Mar. Pollut. Bull. 2013, 73 (1), 144– 153, DOI: 10.1016/j.marpolbul.2013.05.028
186. Smalling, K. L.; Reilly, T. J.; Sandstrom, M. W.; Kuivila, K. M. Occurrence and persistence of fungicides in bed sediments and suspended solids from three targeted use areas in the United States. Sci. Total Environ. 2013, 447C, 179– 185, DOI: 10.1016/j.scitotenv.2013.01.021
187. Solecka J, Zajko J, Postek M, Rajnisz A. 2012. Biologically active secondary metabolites from Actinomycetes. Cent Eur J Biol. 7:373–390.
188. Sonenshein AL, et al. Bacillus subtilis and its closest relatives: From genes to cells. ASM Press; 2002
189. Soyer, J. L., Hamiot, A., Ollivier, B., Balesdent, M., Rouxel, T., and Fudal, I. (2015). The APSES transcription factor LmStuA is required for sporulation, pathogenic development and effector gene expression in Leptosphaeria maculans. Mol. Plant Pathol. 16, 1000–1005. doi: 10.1111/mpp.12249
190. Shrestha, S. K., Munk, L., & Mathur, S. B. (2005). Role of weather on Alternaria leaf blight disease and its effect on yield and yield components of mustard. Nepal Agricultural Research Journal, 6, 62–72
191. Stackebrandt E., Rainey F.A., WardRainey N.L. Proposal for a new hierarchic classification system, actinobacteria classis. Int. J. Syst. Bacteriol. 1997; 47:479–491. doi: 10.1099/00207713-47-2-479.
192. Stein T. 2005. Bacillus subtilis antibiotics: structures, syntheses and specific functions. Mol Microbiol 56:845–857. doi: 10.1111/j.1365-2958.2005.04587.x.
193. Steinke K, Mohite OS, Weber T, Kovács ÁT. Phylogenetic Distribution of Secondary Metabolites in the Bacillus subtilis Species Complex. mSystems. 2021;6(2):e00057-21. Published 2021 Mar 9. doi:10.1128/mSystems.00057-21
194. Stopnisek, N., Zühlke, D., Carlier, A., Barberán, A., Fierer, N., Becher, D., et al. (2016). Molecular mechanisms underlying the close association between soil Burkholderia and fungi. ISME J. 10, 253–264. doi: 10.1038/ismej.2015.73
195. Strange, R. N.; Scott, P. R. Plant disease: a threat to global food security. Annu. Rev. Phytopathol. 2005, 43, 83– 116, DOI: 10.1146/annurev.phyto.43.113004.133839
196. Ignace Sawadogo, Adama Paré, Donatien Kaboré, Didier Montet, Noël Durand, Jalloul Bouajila, Elisabeth P. Zida, Hagrétou Sawadogo-Lingani, Philippe Augustin Nikiéma, Roger Honorat Charles Nebié, Imaël Henri Nestor Bassolé. Antifungal and Antiaflatoxinogenic Effects of Cymbopogon citratus, Cymbopogon nardus, and Cymbopogon schoenanthus Essential Oils Alone and in Combination. Journal of Fungi 2022, 8 (2), 117. https://doi.org/10.3390/jof8020117
197. Talibi I, Askarne L, Boubaker H, Boudyach EH, Msanda F, Saadi B, Aoumar AAB. (2012). Antifungal activity of some Moroccan plants against Geotrichum candidum, the causal agent of postharvest citrus sour rot. Crop protection, 35: 41-46.
198. Tan, K. C., and Oliver, R. P. (2017). Regulation of proteinaceous effector expression in phytopathogenic fungi. PLoS Pathog. 13:e1006241. doi: 10.1371/journal.ppat.1006241
199. Thong WL, Shin-ya K, Nishiyama M, Kuzuyama T.. 2015. Methylbenzene-containing polyketides from a Streptomyces that spontaneously acquired rifampicin resistance: structural elucidation and biosynthesis. J Nat Prod. 79(4):857–864.
200. Thynne, E., Saur, I. M., Simbaqueba, J., Ogilvie, H. A., Gonzalez-cendales, Y., Mead, O., et al. (2017). Fungal phytopathogens encode functional homologues of plant rapid alkalinization factor (RALF) peptides. Mol. Plant Pathol. 18, 811–824. doi: 10.1111/mpp.12444
201. Tilocca, B., Cao, A., and Migheli, Q. (2020). Scent of a killer: microbial volatilome and its role in the biological control of plant pathogens. Front. Microbiol. 11:41. doi: 10.3389/fmicb.2020.00041
202. Thomma BPHJ, 2003. Alternaria spp.: from general saprophyte to specific parasite. Molecular Plant Pathology 4, 225– 36.
203. Tomlin C.D.S. The Pesticide Manual. British Crop Protection Council; Farnham, UK: 2000.
204. Vassilios Triantafyllidis, Chariklia Kosma, Ioannis Konstantinos Karabagias, Anastasios Zotos, Antonios Pittaras, George Kehayias. Fungicides in Europe During the Twenty-first Century: a Comparative Assessment Using Agri-environmental Indices of EU27. Water, Air, & Soil Pollution 2022, 233 (2) https://doi.org/10.1007/s11270-022-05529-5
205. van den Bosch, F.; Paveley, N.; van den Berg, F.; Hobbelen, P.; Oliver, R. Mixtures as a fungicide resistance management tactic. Phytopathology 2014, 104 (12), 1264– 1273, DOI: 10.1094/PHYTO-04-14-0121-RVW
206. van Lenteren J. C., Bolckmans K., Köhl J., Ravensberg W. J., Urbaneja A. (2018). Biological control using invertebrates and microorganisms: plenty of new opportunities. BioControl 63 39–59. 10.1007/s10526-017-9801-4
207. Vidhyasekaran P. 2008. Fungal pathogenesis in plant crops: molecular biology and host defense mechanisms, 2nd ed CRC Press, New York, NY.
208. Vinale F., Sivasithamparam K., Ghisalberti E.L., Woo S.L., Nigro M., Marra R. Trichoderma secondary metabolites active on plants and fungal pathogens. Open Mycol. J. 2008;8:127–139. doi: 10.2174/1874437001408010127.
209. Vincent, D., Rafiqi, M., and Job, D. (2020). The multiple facets of plant-fungal interactions revealed through plant and fungal secretomics. Front. Plant Sci. 10:1626. doi: 10.3389/fpls.2019.01626
210. Vitorino, L. C., Silva, F. O. D., Cruvinel, B. G., Bessa, L. A., Rosa, M., Souchie, E. L., et al. (2020). Biocontrol Potential of Sclerotinia sclerotiorum and physiological changes in soybean in response to Butia archeri palm rhizobacteria. Plants 9:64. doi: 10.3390/plants9010064
211. Vizcaino J.A., Sanz L., Cardoza R.E., Monte E., Gutierrez S. Detection of putative peptide synthetase genes in Trichoderma species. Application of this method to the cloning of a gene from T. harzianum CECT 2413. FEMS Microbiol. Lett. 2005;244:139–148. doi: 10.1016/j.femsle.2005.01.036.
212. Walsh C. Where will new antibiotics come from? Nat. Rev. Microbiol. 2003;1:65–70. doi: 10.1038/nrmicro727.
213. Wang, M., Yang, X., Ruan, R., Fu, H., and Li, H. (2018). Csn5 is required for the conidiogenesis and pathogenesis of the Alternaria alternata tangerine pathotype. Front. Microbiol. 9:508. doi: 10.3389/fmicb.2018.00508
214. Wang, Y., Ji, D., Chen, T., Li, B., Zhang, Z., Qin, G., et al. (2019b). Production, signaling, and scavenging mechanisms of reactive oxygen species in fruit–pathogen interactions. Int. J. Mol. Sci. 20:2994. doi: 10.3390/ijms20122994
215. Warming T.P., Mulderij G., Christoffersen K.S. Clonal variation in physiological responses of Daphnia magna to the strobilurin fungicide azoxystrobin. Environ. Toxicol. Chem. 2009;28:374–380. doi: 10.1897/08-279.1.
216. Weller D.M., Landa B., Mavrodi O., Schroeder K., De La Fuente L., Blouin Bankhead S., Allende Molar R., Bonsall R., Mavrodi D., Thomashow L. Role of 2, 4-diacetylphloroglucinol-producing fluorescent Pseudomonas spp. in the defense of plant roots. Plant Biol. 2007;9:4–20. doi: 10.1055/s-2006-924473.
217. Wick, A.; Fink, G.; Ternes, T. A. Comparison of electrospray ionization and atmospheric pressure chemical ionization for multi-residue analysis of biocides, UV-filters and benzothiazoles in aqueous matrices and activated sludge by liquid chromatography–tandem mass spectrometry. J. Chromatogr. A 2010, 1217 (14), 2088– 2103, DOI: 10.1016/j.chroma.2010.01.079
218. Wink J, Mohammadipanah F, Hamedi J, editors. 2017. Biology and Biotechnology of Actinobacteria. Cham (Switzerland): Springer Nature.
219. Winstanley C, O’Brien S, Brockhurst MA. Pseudomonas aeruginosa evolutionary adaptation and diversification in cystic fibrosis chronic lung infections. Trends Microbiol. 2016;24(5):327–337. doi: 10.1016/j.tim.2016.01.008.
220. Jakob Wolfram, Sebastian Stehle, Sascha Bub, Lara L. Petschick, Ralf Schulz. Insecticide Risk in US Surface Waters: Drivers and Spatiotemporal Modeling. Environmental Science & Technology 2019, 53 (20) , 12071-12080. doi.org/10.1021/acs.est.9b04285
221. Xiao K., Kinkel L.L., Samac D.A. Biological control of Phytophthora root rots on alfalfa and soybean with Streptomyces. Biol. Control. 2002;23:285–295. doi: 10.1006/bcon.2001.1015
222. Xu J, Gu K, Zhang D-J, Li Y-G, Tian L.. 2017. Ghanamycins A and B, two novel γ-butyrolactones from marine-derived Streptomyces ghanaensis TXC6-16. J Antibiot (Tokyo). 70:733–736.
223. Yakti, W., Kovács, G. M., and Franken, P. (2019). Differential interaction of the dark septate endophyte Cadophora sp. and fungal pathogens in vitro and in planta. FEMS Microbiol. Ecol. 95:fiz164. doi: 10.1093/femsec/fiz164
224. Yang, Y., Fang, A., Yu, Y., Bi, C., and Zhou, C. (2019). Integrated transcriptomic and secretomic approaches reveal critical pathogenicity factors in Pseudofabraea citricarpa inciting citrus target spot. Microb. Biotechnol. 12, 1260–1273. doi: 10.1111/1751-7915.13440
225. Yang, J., Guo, W., Wang, J., Yang, X., Zhang, Z., and Zhao, Z. (2020). T-2 toxin-induced oxidative stress leads to imbalance of mitochondrial fission and fusion to activate cellular apoptosis in the human liver 7702 cell line. Toxins 12:43. doi: 10.3390/toxins12010043
226. Yang J, Yang Z, Yin Y, Rao M, Liang Y, Ge M. 2016. Three novel polyene macrolides isolated from cultures of Streptomyces lavenduligriseus. J Antibiot (Tokyo). 69:62–65.
227. Yin, Z., Ke, X., Kang, Z., and Huang, L. (2016). Apple resistance responses against Valsa mali revealed by transcriptomics analyses. Physiol. Mol. Plant P. 93, 85–92. doi: 10.1016/j.pmpp.2016.01.004
228. Younes M. Rashad, Elsayed S. Abdel Razik, Doaa B. Darwish. Essential oil from Lavandula angustifolia elicits expression of three SbWRKY transcription factors and defense-related genes against sorghum damping-off. Scientific Reports 2022 12 (1)
229. Yu, J., Li, T., Tian, L., Tang, C., Klosterman, S. J., Tian, C., et al. (2019). Two Verticillium dahliae MAPKKKs, VdSsk2 and VdSte11, have distinct roles in pathogenicity, microsclerotial formation, and stress adaptation. mSphere 4:e00426-19. doi: 10.1128/mSphere.00426-19
230. Zeilinger, S., Gupta, V. K., Dahms, T. E., Silva, R. N., Singh, H. B., Upadhyay, R. S., et al. (2016). Friends or foes? Emerging insights from fungal interactions with plants. FEMS Microbiol. Rev. 40, 182–207. doi: 10.1093/femsre/fuv045
231. Zhang, H., Li, Y., Dickman, M. B., and Wang, Z. (2019). Cytoprotective Co-chaperone BcBAG1 is a component for fungal development, virulence, and unfolded protein response (UPR) of Botrytis cinerea. Front. Microbiol. 10:685. doi: 10.3389/fmicb.2019.00685
232. Zhang, Q., Gao, X., Ren, Y., Ding, X., Qiu, J., Li, N., et al. (2018). Improvement of verticillium wilt resistance by applying arbuscular mycorrhizal fungi to a cotton variety with high symbiotic efficiency under field conditions. Int. J. Mol. Sci. 19:241. doi: 10.3390/ijms19010241
233. Zhao, H., Zhou, T., Xie, J., Cheng, J., Jiang, D., and Fu, Y. (2020). Host Transcriptional Response of Sclerotinia sclerotiorum Induced by the Mycoparasite Coniothyrium minitans. Front. Microbiol. 11, 183. doi: 10.3389/fmicb.2020.00183
234. Zhao, Z., Liu, H., Wang, C., and Xu, J. R. (2013). Comparative analysis of fungal genomes reveals different plant cell wall degrading capacity in fungi. BMC Genom. 14:274. doi: 10.1186/1471-2164-14-274
235. Zhao X, Kuipers OP. 2016. Identification and classification of known and putative antimicrobial compounds produced by a wide variety of Bacillales species. BMC Genomics 17:882. doi: 10.1186/s12864-016-3224-y.
236. Zhenyu Tian, Katherine T. Peter, Alex D. Gipe, Haoqi Zhao, Fan Hou, David A. Wark, Tarang Khangaonkar, Edward P. Kolodziej, C. Andrew James. Suspect and Nontarget Screening for Contaminants of Emerging Concern in an Urban Estuary. Environmental Science & Technology 2020, 54 (2) , 889-901. https://doi.org/10.1021/acs.est.9b06126



Вопрос-ответ:

Какую активность имеют вторичные метаболиты бактерий против плесневого гриба Alternaria brassicicola?

Вторичные метаболиты бактерий имеют противогрибковую активность против плесневого гриба Alternaria brassicicola.

Какие фитопатогены относятся к грибу Alternaria brassicicola?

Гриб Alternaria brassicicola является фитопатогенным для сельскохозяйственных культур.

Какие особенности имеет фитопатогенный гриб Alternaria brassicicola?

Фитопатогенный гриб Alternaria brassicicola имеет определенные биологические особенности, которые влияют на его патогенез.

Как можно бороться с фитопатогенными грибами, включая Alternaria brassicicola?

Существуют различные способы борьбы с фитопатогенными грибами, в том числе и с грибом Alternaria brassicicola.

Какие методы уничтожения грибов, включая фитопатогенный гриб Alternaria brassicicola, существуют?

Существуют химические методы борьбы с фитопатогенными грибами, включая гриб Alternaria brassicicola, которые основаны на применении различных фунгицидов.

Какие вторичные метаболиты бактерий оказывают противогрибковую активность на гриб Alternaria brassicicola?

В статье рассматривается оценка противогрибковой активности вторичных метаболитов бактерий на примере гриба Alternaria brassicicola. Конкретные вторичные метаболиты бактерий, оказывающие противогрибковую активность на данный гриб, не указаны.

Какие биологические особенности имеет гриб Alternaria brassicicola?

Гриб Alternaria brassicicola относится к фитопатогенным грибам, поражающим сельскохозяйственные культуры. Он способен поражать различные виды капусты, такие как белокочанная капуста, кольраби и брокколи. Гриб вызывает у растений листопоражения, приводящие к урожайным потерям.

Как развивается патогенез гриба Alternaria brassicicola?

Патогенез гриба Alternaria brassicicola включает следующие этапы: 1) проникновение гриба через устьицы листьев или поврежденные ткани, 2) инкубационный период, в течение которого гриб размножается в тканях растения, 3) формирование конидиальных спор и их распространение для заражения новых растений.

Какие способы борьбы с фитопатогенными грибами существуют?

Существует несколько способов борьбы с фитопатогенными грибами, включая химические, биологические и физические методы. Отдельно стоит отметить химические методы, которые включают использование фунгицидов, таких как препараты на основе меди, азотистых соединений и других активных веществ. Применение фунгицидов может быть эффективным, но также может привести к появлению резистентности у грибов.

Какие фунгициды применяются для борьбы с фитопатогенными грибами?

Для борьбы с фитопатогенными грибами применяются различные фунгициды. Это могут быть препараты на основе меди, такие как оксихлорид меди или гидроксид меди, а также препараты на основе азотистых соединений, например, дихлорфенамид или манкозеб. Также существуют другие фунгициды, имеющие различные механизмы действия и спектр активности.

Что такое Alternaria brassicicola?

Alternaria brassicicola - это патогенный гриб, который поражает сельскохозяйственные культуры, особенно капусту и другие капустные растения.