Why an implant rejected by the body?

Заказать уникальную курсовую работу
Тип работы: Курсовая работа
Предмет: Английский продвинутый
  • 15 15 страниц
  • 20 + 20 источников
  • Добавлена 13.01.2024
1 000 руб.
  • Содержание
  • Часть работы
  • Список литературы
-
Фрагмент для ознакомления

Conclusion: A thorough understanding of the biological reactions to implanted materials is necessary for the development of novel biomaterials, biomedical devices, or tissue-engineered constructions. The creation of foreign body giant cells at the tissue/material interface is the final result of a series of events that start in the surrounding tissue as soon as a biomaterial enters the body. Reactions on a material's surface can have catastrophic results. Acute and chronic implant rejection reactions can impact a variety of organs and tissues and lead to major problems in clinical practice during transplantation as well as the introduction of biocompatible materials.As shown in this study, there are three aspects of cellular and humoral immunity and allergic reactions of the body to implant, that lead to implant rejection. It is necessary to conduct additional research to study the body's reactions to the implant and identify effective methods to reduce the body's rejection of the transplant. References: Anggelia, M. R., Huang, R. W., Cheng, H. Y., Lin, C. H., & Lin, C. H. (2022). Implantable Immunosuppressant Delivery to Prevent Rejection in Transplantation. International journal of molecular sciences, 23(3), 1592. https://doi.org/10.3390/ijms23031592Banerjee, D., Nayakawde, N. B., Antony, D., Deshmukh, M., Ghosh, S., Sihlbom, C., Berger, E., UlHaq, U., & Olausson, M. (2022). Characterization of Decellularized Implants for Extracellular Matrix Integrity and Immune Response Elicitation. Tissueengineering. Part A, 28(13-14), 621–639. https://doi.org/10.1089/ten.TEA.2021.0146Baseri, M., Radmand, F., Hamedi, R., Yousefi, M., & Kafil, H. S. (2020). Immunological Aspects of Dental Implant Rejection. BioMed research international, 2020, 7279509. https://doi.org/10.1155/2020/7279509Bishop A. (2023). Implantable biosensor tracks temperature to detect early transplant rejection in rats. Nature biotechnology, 41(10), 1386. https://doi.org/10.1038/s41587-023-01998-zCalvino, M., Sánchez-Cuadrado, I., Gavilán, J., & Lassaletta, L. (2023). Long-Term Non-Users of Transcutaneous Auditory Implants: Thirty Years of Experience at a Single Institution. International journal of environmental research and public health, 20(13), 6201. https://doi.org/10.3390/ijerph20136201Crouzet, E., Garcin, T., Gauthier, A. S., He, Z., Perrache, C., Delavenne, X., Basset, T., Peoc'h, M., Gain, P., & Thuret, G. (2018). Immunosuppression by a subconjunctival implant releasing dexamethasone in a rabbit model of penetrating keratoplasty. The British journal of ophthalmology, 102(5), 692–699. https://doi.org/10.1136/bjophthalmol-2017-310734Duan, Y., Liu, Y., Xu, Y., & Zhou, C. (2023). Bioinformatics Analysis Identifies Key Genes in Recurrent Implantation Failure Based on Immune Infiltration. Reproductive sciences (Thousand Oaks, Calif.), 30(3), 952–965. https://doi.org/10.1007/s43032-022-01060-4Eslami-Kaliji, F., Hedayat Nia, N., Lakey, J. R. T., Smink, A. M., & Mohammadi, M. (2023). Mechanisms of Foreign Body Giant Cell Formation in Response to Implantable Biomaterials. Polymers, 15(5), 1313. https://doi.org/10.3390/polym15051313Gandhi, N., Das, S., Mittal, R., & Barik, M. R. (2022). MicrosporidialEndotheliitis Mimicking Graft Rejection After Deep Anterior Lamellar Keratoplasty. Cornea, 41(6), 782–784. https://doi.org/10.1097/ICO.0000000000002813Gao, H., Liu, M., Li, N., Chen, T., Qi, X., Xie, L., & Shi, W. (2022). Femtosecond laser-assisted minimally invasive lamellar keratoplasty for the treatment of advanced keratoconus. Clinical & experimentalophthalmology, 50(3), 294–302. https://doi.org/10.1111/ceo.14047Jain, P., Kathuria, H., & Dubey, N. (2022). Advances in 3D bioprinting of tissues/organs for regenerative medicine and in-vitro models. Biomaterials, 287, 121639. https://doi.org/10.1016/j.biomaterials.2022.121639Lokwani, R., & Sadtler, K. (2021). High-Dimensionality Flow Cytometry for Immune Function Analysis of Dissected Implant Tissues. Journalofvisualizedexperiments :JoVE, (175), 10.3791/61767. https://doi.org/10.3791/61767Neroev V.V., Balatskaya N.V., Chentsova E.V., Shamkhalova K.M. Mechanisms of immune regulation and transplantation immunity in corneal transplants. Medical Immunology (Russia). 2020;22(1):61-76. (In Russ.) https://doi.org/10.15789/1563-0625-MOI-1768Pan, J., Zhang, W., Zhu, J., Tan, J., Huang, Y., Mo, K., Tong, Y., Xie, Z., Ke, Y., Zheng, H., Ouyang, H., Shi, X., & Gao, L. (2023). Arrested Phase Separation Enables High-Performance Keratoprostheses. Advanced materials (Deerfield Beach, Fla.), 35(16), e2207750. https://doi.org/10.1002/adma.202207750Płusa, T., Baranowska, A., Baranowski, P., Dudek, J., & Baranowska-Kijewska, J. (2023). Metal hypersensitivity in hip, knee and spine surgery. Postepydermatologiiialergologii, 40(2), 215–219. https://doi.org/10.5114/ada.2023.127640Silva-López, M. S., & Alcántara-Quintana, L. E. (2023). The Era of Biomaterials: Smart Implants?. ACS applied bio materials, 6(8), 2982–2994. https://doi.org/10.1021/acsabm.3c00284Sugimoto, S., Date, H., Miyoshi, K., Otani, S., Ishihara, M., Yamane, M., & Toyooka, S. (2022). Long-term outcomes of living-donor lobar lung transplantation. The Journal of thoracic and cardiovascular surgery, 164(2), 440–448. https://doi.org/10.1016/j.jtcvs.2021.08.090Trone, M. C., Poinard, S., Crouzet, E., Garcin, T., Mentek, M., Forest, F., Matray, M., Thuret, G., & Gain, P. (2023). Dropless penetrating keratoplasty using a subconjunctival dexamethasone implant: safety pilot study. TheBritishjournalofophthalmology, 107(2), 181–186. https://doi.org/10.1136/bjophthalmol-2021-319376Vicioni-Marques, F., Pimentel, D. J. B., Matsumoto, M. A. N., Stuani, M. B. S., & Romano, F. L. (2022). Orthodontic mini-implants: clinical and peri-implant evaluation. Journal of the World federation of orthodontists, 11(1), 22–28. https://doi.org/10.1016/j.ejwf.2021.11.001Zhang, X., Wang, H., Sun, X., Zhao, L., Li, T., Qi, X., Wang, T., Zhou, Q., & Shi, W. (2023). Development of Thermoplastic Polyurethane Films for the Replacement of Corneal Endothelial Function of Transparency Maintenance. ACS applied bio materials, 10.1021/acsabm.3c00681. Advance online publication. https://doi.org/10.1021/acsabm.3c00681

References:
1. Anggelia, M. R., Huang, R. W., Cheng, H. Y., Lin, C. H., & Lin, C. H. (2022). Implantable Immunosuppressant Delivery to Prevent Rejection in Transplantation. International journal of molecular sciences, 23(3), 1592. https://doi.org/10.3390/ijms23031592
2. Banerjee, D., Nayakawde, N. B., Antony, D., Deshmukh, M., Ghosh, S., Sihlbom, C., Berger, E., Ul Haq, U., & Olausson, M. (2022). Characterization of Decellularized Implants for Extracellular Matrix Integrity and Immune Response Elicitation. Tissue engineering. Part A, 28(13-14), 621–639. https://doi.org/10.1089/ten.TEA.2021.0146
3. Baseri, M., Radmand, F., Hamedi, R., Yousefi, M., & Kafil, H. S. (2020). Immunological Aspects of Dental Implant Rejection. BioMed research international, 2020, 7279509. https://doi.org/10.1155/2020/7279509
4. Bishop A. (2023). Implantable biosensor tracks temperature to detect early transplant rejection in rats. Nature biotechnology, 41(10), 1386. https://doi.org/10.1038/s41587-023-01998-z
5. Calvino, M., Sánchez-Cuadrado, I., Gavilán, J., & Lassaletta, L. (2023). Long-Term Non-Users of Transcutaneous Auditory Implants: Thirty Years of Experience at a Single Institution. International journal of environmental research and public health, 20(13), 6201. https://doi.org/10.3390/ijerph20136201
6. Crouzet, E., Garcin, T., Gauthier, A. S., He, Z., Perrache, C., Delavenne, X., Basset, T., Peoc'h, M., Gain, P., & Thuret, G. (2018). Immunosuppression by a subconjunctival implant releasing dexamethasone in a rabbit model of penetrating keratoplasty. The British journal of ophthalmology, 102(5), 692–699. https://doi.org/10.1136/bjophthalmol-2017-310734
7. Duan, Y., Liu, Y., Xu, Y., & Zhou, C. (2023). Bioinformatics Analysis Identifies Key Genes in Recurrent Implantation Failure Based on Immune Infiltration. Reproductive sciences (Thousand Oaks, Calif.), 30(3), 952–965. https://doi.org/10.1007/s43032-022-01060-4
8. Eslami-Kaliji, F., Hedayat Nia, N., Lakey, J. R. T., Smink, A. M., & Mohammadi, M. (2023). Mechanisms of Foreign Body Giant Cell Formation in Response to Implantable Biomaterials. Polymers, 15(5), 1313. https://doi.org/10.3390/polym15051313
9. Gandhi, N., Das, S., Mittal, R., & Barik, M. R. (2022). Microsporidial Endotheliitis Mimicking Graft Rejection After Deep Anterior Lamellar Keratoplasty. Cornea, 41(6), 782–784. https://doi.org/10.1097/ICO.0000000000002813
10. Gao, H., Liu, M., Li, N., Chen, T., Qi, X., Xie, L., & Shi, W. (2022). Femtosecond laser-assisted minimally invasive lamellar keratoplasty for the treatment of advanced keratoconus. Clinical & experimental ophthalmology, 50(3), 294–302. https://doi.org/10.1111/ceo.14047
11. Jain, P., Kathuria, H., & Dubey, N. (2022). Advances in 3D bioprinting of tissues/organs for regenerative medicine and in-vitro models. Biomaterials, 287, 121639. https://doi.org/10.1016/j.biomaterials.2022.121639
12. Lokwani, R., & Sadtler, K. (2021). High-Dimensionality Flow Cytometry for Immune Function Analysis of Dissected Implant Tissues. Journal of visualized experiments : JoVE, (175), 10.3791/61767. https://doi.org/10.3791/61767
13. Neroev V.V., Balatskaya N.V., Chentsova E.V., Shamkhalova K.M. Mechanisms of immune regulation and transplantation immunity in corneal transplants. Medical Immunology (Russia). 2020;22(1):61-76. (In Russ.) https://doi.org/10.15789/1563-0625-MOI-1768
14. Pan, J., Zhang, W., Zhu, J., Tan, J., Huang, Y., Mo, K., Tong, Y., Xie, Z., Ke, Y., Zheng, H., Ouyang, H., Shi, X., & Gao, L. (2023). Arrested Phase Separation Enables High-Performance Keratoprostheses. Advanced materials (Deerfield Beach, Fla.), 35(16), e2207750. https://doi.org/10.1002/adma.202207750
15. Płusa, T., Baranowska, A., Baranowski, P., Dudek, J., & Baranowska-Kijewska, J. (2023). Metal hypersensitivity in hip, knee and spine surgery. Postepy dermatologii i alergologii, 40(2), 215–219. https://doi.org/10.5114/ada.2023.127640
16. Silva-López, M. S., & Alcántara-Quintana, L. E. (2023). The Era of Biomaterials: Smart Implants?. ACS applied bio materials, 6(8), 2982–2994. https://doi.org/10.1021/acsabm.3c00284
17. Sugimoto, S., Date, H., Miyoshi, K., Otani, S., Ishihara, M., Yamane, M., & Toyooka, S. (2022). Long-term outcomes of living-donor lobar lung transplantation. The Journal of thoracic and cardiovascular surgery, 164(2), 440–448. https://doi.org/10.1016/j.jtcvs.2021.08.090
18. Trone, M. C., Poinard, S., Crouzet, E., Garcin, T., Mentek, M., Forest, F., Matray, M., Thuret, G., & Gain, P. (2023). Dropless penetrating keratoplasty using a subconjunctival dexamethasone implant: safety pilot study. The British journal of ophthalmology, 107(2), 181–186. https://doi.org/10.1136/bjophthalmol-2021-319376
19. Vicioni-Marques, F., Pimentel, D. J. B., Matsumoto, M. A. N., Stuani, M. B. S., & Romano, F. L. (2022). Orthodontic mini-implants: clinical and peri-implant evaluation. Journal of the World federation of orthodontists, 11(1), 22–28. https://doi.org/10.1016/j.ejwf.2021.11.001
20. Zhang, X., Wang, H., Sun, X., Zhao, L., Li, T., Qi, X., Wang, T., Zhou, Q., & Shi, W. (2023). Development of Thermoplastic Polyurethane Films for the Replacement of Corneal Endothelial Function of Transparency Maintenance. ACS applied bio materials, 10.1021/acsabm.3c00681. Advance online publication. https://doi.org/10.1021/acsabm.3c00681