Уратурия и гиперурикемия новорождённых, механизмы развития.
Заказать уникальный реферат
Тип работы:
Реферат
Предмет:
Физиология
- 12 12 страниц
- 30 + 30 источников
- Добавлена 08.10.2024
748 руб.
- Содержание
- Часть работы
- Список литературы
Содержание
Введение...................................................................................................................2
1. Понятие уратуриии гиперурикемии.................................................................3
2. Особенности обмена мочевой кислоты новорождённых................................4
3. Механизмы развития уратурии и гиперурикемии у новорождённых............5 4. Факторы риска и последствия............................................................................6 5. Диагностика уратурии и гиперурикемии у новорождённых..........................7 6. Подходы к коррекции уратурии и гиперурикемии у новорождённых...........8 Заключение...............................................................................................................9 Список литературы................................................................................................10
Список литературы
1. Брыксина Е.Ю., Брыксин В.С. Особенности пуринового обмена у новорождённых. Педиатрия. 2018;97(5):124-129.
2. Володин Н.Н., Дегтярев Д.Н., Дегтярева А.В. Неонатология: национальное руководство. М.: ГЭОТАР-Медиа; 2019.
3. Игнатова М.С., Вельтищев Ю.Е. Детская нефрология. М.: МИА; 2017.
4. Папаян А.В., Савенкова Н.Д. Клиническая нефрология детского возраста. СПб.: СОТИС; 2018.
5. Сафина А.И., Даминова М.А. Нарушения пуринового обмена у новорождённых. Практическая медицина. 2019;17(5):47-52.
6. Шабалов Н.П. Неонатология: учебное пособие в 2 т. М.: МЕДпресс-информ; 2020.
7. Яцык Г.В., Бомбардирова Е.П. Болезни новорождённых. М.: ГЭОТАР-Медиа; 2019.
8. Agarwal A., Banerjee A., Banerjee U.C. Xanthine oxidoreductase: A journey from purine metabolism to cardiovascular excitation-contraction coupling. Crit Rev Biotechnol. 2018;31(3):264-280.
9. Bech A.P., Bouma-de Krijger A., van Zuilen A.D., et al. Impact of uric acid on kidney function and clinical implications. Nephrol Dial Transplant. 2019;35(5):760-770.
10. Bobulescu I.A., Moe O.W. Renal transport of uric acid: evolving concepts and uncertainties. Adv Chronic Kidney Dis. 2018;19(6):358-371.
11. Chevalier R.L. The proximal tubule is the primary target of injury and progression of kidney disease: role of the glomerulotubular junction. Am J Physiol Renal Physiol. 2017;311(1):F145-F161.
12. Dalbeth N., Merriman T.R., Stamp L.K. Gout. Lancet. 2020;392(10147):1907-1918.
13. Enomoto A., Endou H. Roles of organic anion transporters (OATs) and a urate transporter (URAT1) in the pathophysiology of human disease. Clin Exp Nephrol. 2019;9(3):195-205.
14. Feig D.I., Kang D.H., Johnson R.J. Uric acid and cardiovascular risk. N Engl J Med. 2018;359(17):1811-1821.
15. Johnson R.J., Nakagawa T., Sanchez-Lozada L.G., et al. Sugar, uric acid, and the etiology of diabetes and obesity. Diabetes. 2019;62(10):3307-3315.
16. Kang D.H., Chen W. Uric acid and chronic kidney disease: new understanding of an old problem. Semin Nephrol. 2018;31(5):447-452.
17. Kumric M., Borovac J.A., Kurir T.T., et al. Clinical implications of uric acid in heart failure: a comprehensive review. Life (Basel). 2021;11(1):53.
18. Maiuolo J., Oppedisano F., Gratteri S., et al. Regulation of uric acid metabolism and excretion. Int J Cardiol. 2016;213:8-14.
19. Mandal A.K., Mount D.B. The molecular physiology of uric acid homeostasis. Annu Rev Physiol. 2020;77:323-345.
20. Mazzali M., Hughes J., Kim Y.G., et al. Elevated uric acid increases blood pressure in the rat by a novel crystal-independent mechanism. Hypertension. 2019;38(5):1101-1106.
21. Nakagawa T., Kang D.H., Feig D., et al. Unearthing uric acid: an ancient factor with recently found significance in renal and cardiovascular disease. Kidney Int. 2018;69(10):1722-1725.
22. Perez-Ruiz F., Dalbeth N., Bardin T. A review of uric acid, crystal deposition disease, and gout. Adv Ther. 2020;32(1):31-41.
23. Prasad Sah O.S., Qing Y.X. Associations between hyperuricemia and chronic kidney disease: a review. Nephrourol Mon. 2018;7(3):e27233.
24. Richette P., Bardin T. Gout. Lancet. 2017;375(9711):318-328.
25. Soltani Z., Rasheed K., Kapusta D.R., et al. Potential role of uric acid in metabolic syndrome, hypertension, kidney injury, and cardiovascular diseases: is it time for reappraisal? Curr Hypertens Rep. 2018;15(3):175-181.
26. Spiga R., Marini M.A., Mancuso E., et al. Uric acid is associated with inflammatory biomarkers and induces inflammation via activating the NF-κB signaling pathway in HepG2 cells. Arterioscler Thromb Vasc Biol. 2019;37(6):1241-1249.
27. Tsai C.W., Lin S.Y., Kuo C.C., et al. Serum uric acid and progression of kidney disease: a longitudinal analysis and mini-review. PLoS One. 2020;12(1):e0170393.
28. Wu X., Wakamiya M., Vaishnav S., et al. Hyperuricemia and urate nephropathy in urate oxidase-deficient mice. Proc Natl Acad Sci U S A. 2017;91(2):742-746.
29. Yan D., Tu Y., Jiang F., et al. Uric acid is independently associated with diabetic kidney disease: a cross-sectional study in a Chinese population. PLoS One. 2018;10(6):e0129797.
30. Zhu Y., Pandya B.J., Choi H.K. Prevalence of gout and hyperuricemia in the US general population: the National Health and Nutrition Examination Survey 2007-2008. Arthritis Rheum. 2018;63(10):3136-3141.
1. Брыксина Е.Ю., Брыксин В.С. Особенности пуринового обмена у новорождённых. Педиатрия. 2018;97(5):124-129.
2. Володин Н.Н., Дегтярев Д.Н., Дегтярева А.В. Неонатология: национальное руководство. М.: ГЭОТАР-Медиа; 2019.
3. Игнатова М.С., Вельтищев Ю.Е. Детская нефрология. М.: МИА; 2017.
4. Папаян А.В., Савенкова Н.Д. Клиническая нефрология детского возраста. СПб.: СОТИС; 2018.
5. Сафина А.И., Даминова М.А. Нарушения пуринового обмена у новорождённых. Практическая медицина. 2019;17(5):47-52.
6. Шабалов Н.П. Неонатология: учебное пособие в 2 т. М.: МЕДпресс-информ; 2020.
7. Яцык Г.В., Бомбардирова Е.П. Болезни новорождённых. М.: ГЭОТАР-Медиа; 2019.
8. Agarwal A., Banerjee A., Banerjee U.C. Xanthine oxidoreductase: A journey from purine metabolism to cardiovascular excitation-contraction coupling. Crit Rev Biotechnol. 2018;31(3):264-280.
9. Bech A.P., Bouma-de Krijger A., van Zuilen A.D., et al. Impact of uric acid on kidney function and clinical implications. Nephrol Dial Transplant. 2019;35(5):760-770.
10. Bobulescu I.A., Moe O.W. Renal transport of uric acid: evolving concepts and uncertainties. Adv Chronic Kidney Dis. 2018;19(6):358-371.
11. Chevalier R.L. The proximal tubule is the primary target of injury and progression of kidney disease: role of the glomerulotubular junction. Am J Physiol Renal Physiol. 2017;311(1):F145-F161.
12. Dalbeth N., Merriman T.R., Stamp L.K. Gout. Lancet. 2020;392(10147):1907-1918.
13. Enomoto A., Endou H. Roles of organic anion transporters (OATs) and a urate transporter (URAT1) in the pathophysiology of human disease. Clin Exp Nephrol. 2019;9(3):195-205.
14. Feig D.I., Kang D.H., Johnson R.J. Uric acid and cardiovascular risk. N Engl J Med. 2018;359(17):1811-1821.
15. Johnson R.J., Nakagawa T., Sanchez-Lozada L.G., et al. Sugar, uric acid, and the etiology of diabetes and obesity. Diabetes. 2019;62(10):3307-3315.
16. Kang D.H., Chen W. Uric acid and chronic kidney disease: new understanding of an old problem. Semin Nephrol. 2018;31(5):447-452.
17. Kumric M., Borovac J.A., Kurir T.T., et al. Clinical implications of uric acid in heart failure: a comprehensive review. Life (Basel). 2021;11(1):53.
18. Maiuolo J., Oppedisano F., Gratteri S., et al. Regulation of uric acid metabolism and excretion. Int J Cardiol. 2016;213:8-14.
19. Mandal A.K., Mount D.B. The molecular physiology of uric acid homeostasis. Annu Rev Physiol. 2020;77:323-345.
20. Mazzali M., Hughes J., Kim Y.G., et al. Elevated uric acid increases blood pressure in the rat by a novel crystal-independent mechanism. Hypertension. 2019;38(5):1101-1106.
21. Nakagawa T., Kang D.H., Feig D., et al. Unearthing uric acid: an ancient factor with recently found significance in renal and cardiovascular disease. Kidney Int. 2018;69(10):1722-1725.
22. Perez-Ruiz F., Dalbeth N., Bardin T. A review of uric acid, crystal deposition disease, and gout. Adv Ther. 2020;32(1):31-41.
23. Prasad Sah O.S., Qing Y.X. Associations between hyperuricemia and chronic kidney disease: a review. Nephrourol Mon. 2018;7(3):e27233.
24. Richette P., Bardin T. Gout. Lancet. 2017;375(9711):318-328.
25. Soltani Z., Rasheed K., Kapusta D.R., et al. Potential role of uric acid in metabolic syndrome, hypertension, kidney injury, and cardiovascular diseases: is it time for reappraisal? Curr Hypertens Rep. 2018;15(3):175-181.
26. Spiga R., Marini M.A., Mancuso E., et al. Uric acid is associated with inflammatory biomarkers and induces inflammation via activating the NF-κB signaling pathway in HepG2 cells. Arterioscler Thromb Vasc Biol. 2019;37(6):1241-1249.
27. Tsai C.W., Lin S.Y., Kuo C.C., et al. Serum uric acid and progression of kidney disease: a longitudinal analysis and mini-review. PLoS One. 2020;12(1):e0170393.
28. Wu X., Wakamiya M., Vaishnav S., et al. Hyperuricemia and urate nephropathy in urate oxidase-deficient mice. Proc Natl Acad Sci U S A. 2017;91(2):742-746.
29. Yan D., Tu Y., Jiang F., et al. Uric acid is independently associated with diabetic kidney disease: a cross-sectional study in a Chinese population. PLoS One. 2018;10(6):e0129797.
30. Zhu Y., Pandya B.J., Choi H.K. Prevalence of gout and hyperuricemia in the US general population: the National Health and Nutrition Examination Survey 2007-2008. Arthritis Rheum. 2018;63(10):3136-3141.